Fiber nonlinearity is one of the most important limiters of capacity in coherent optical communications. In this paper, we review two nonlinear compensation methods: digital backward propagation (BP) and nonlinear ...Fiber nonlinearity is one of the most important limiters of capacity in coherent optical communications. In this paper, we review two nonlinear compensation methods: digital backward propagation (BP) and nonlinear electrical equalizer (NLEE) based on the timedomain Volterra series. These compensation algorithms are implemented in a singlechannel 50 Gb/s coherent optical singlecarrier frequency division multiplexed (CO-SCFDM) system transmitting over 10 × 80 km of standard singlemode fiber (SSMF).展开更多
The recently reported high spectral efficiency (SE) and high-baud-rate szgnal transmission are all Daseo on digital coherent optical communications and digital signal processing (DSP). DSP simplifies the re- cepti...The recently reported high spectral efficiency (SE) and high-baud-rate szgnal transmission are all Daseo on digital coherent optical communications and digital signal processing (DSP). DSP simplifies the re- ception of advanced modulation formats and also enables the major electrical and optical impairments to be processed and compensated in the digital domain, at the transmitter or receiver side. In this paper, we summarize the research progress on high-speed signal generation and detection and also show the progress on DSP for high-speed signal detection. We also report the latest progress on multi-core and multi-mode multiplexing.展开更多
An improved zero-interpolation method with signal clipping to improve fiber nonlinearity tolerance in the long-haul coherent optical orthogonal frequency division multiplexing system (CO-OFDM) is presented. The new ...An improved zero-interpolation method with signal clipping to improve fiber nonlinearity tolerance in the long-haul coherent optical orthogonal frequency division multiplexing system (CO-OFDM) is presented. The new technique is implemented by interpolating zero subcarriers and selecting the odd subcarriers to carry data and clipping conventional CO-OFDM signal at zero. With such a scheme,the effect of fiber nonlinearity can be miti-gated,and the wanted signal carried on odd subcarriers is or-thogonal to clipping noise,which falls on even frequencies. Simu-lation shows that the system Q value is improved by more than 2 dB at the length of 960 km展开更多
Because it has the advantages of high sensitivity, and it is easy to demodulate and convenient to select in FDM system, the coherent optical fiber communication system is much suitable to be used in long distance opt...Because it has the advantages of high sensitivity, and it is easy to demodulate and convenient to select in FDM system, the coherent optical fiber communication system is much suitable to be used in long distance optical communication systems and in optical fiber WANs. There are two major patterns in coherent optical fiber communication: heterodyne and homodyne. Compared with the heterodyne scheme, the homodyne optical fiber communication system has the following advantages: (1) The sensitivity of the homodyne receiver is higher than that of the heterodyne receiver. As we know, the PSK homodyne optical fiber communication system has the highest sensitivity in coherent optical fiber communication systems. So it is much suitable to be used in long distance optical communication systems or in FDM systems. (2) Because the homodyne receiver only uses the baseband to demodulate the transmitted signals, it occupies much narrower frequency domain than the heterodyne receiver does, which makes it more suitable to be used in multichannel systems. (3) The demodulation pattern used in homodyne receiver is much easier than that used in the heterodyne receiver, since it only needs the baseband demodulation. Usually we construct a homodyne receiver with an optical phase locked loop (OPLL). The research of the OPLL began at 1960′s and the study of the homodyne receiver has been made gradually. In 1984, the first homodyne optical fiber communication system was demonstrated in BTRL, in which the signal laser and the local laser were all 1.5 μm He Ne gas lasers, and the OPLL used was a balanced one. In 1989, L.G.Kazovsky demonstrated experimentally a homodyne receiver in Bellcore using two 1.3 μm Nd:YAG lasers as the signal laser and the local laser and also using a balanced OPLL. Because the linewidth of the normal semiconductor laser is too large and its frequency stability is much poorer, it is very difficult to construct a homodyne receiver with the semiconductor lasers. At the end of 1989, the first Dissertation completed Jul. 1992homodyne optical fiber communication system using two 1.5 μm external cavity semiconductor lasers as the signal laser and the local laser, respectively, was finished in AT&T Bell Lab by J. M. Kahn, in which the OPLL was also a balanced one. In China, the research of the homodyne optical fiber communication system was funded by the National Seventh Five Year Program and by the National Natural Science Foundation. The difficulties to construct a homodyne optical fiber communication system are listed as follows: (1) In homodyne communication systems, the signal laser′s frequency should be stable to avoid the penalty of the receiver′s BER and the crosstalk to other channels in a FDM system, and the local laser could be tuned widely and easily to cover all the signal lasers′ frequency domain. Both the signal laser and the local laser should be narrow in linewidth to decrease the influence of the laser′s phase noise on the BER of the receiver. (2) The modulation pattern used should be studied and chosen carefully because the requirements of different kinds of modulation on the laser, the receiver and the channel are different. (3) Since the construction of the linear OPLL (the balanced) and the nonlinear OPLL (the Costas OPLL, or the Decision Driven OPLL) are rather different, their requirements on the linewidths of the lasers are different too, we should study the theory and the construction of the OPLL carefully to select the suitable scheme to realize. (4) In a multichannel system (such as a FDM system), the influence of crosstalk between channels on the homodyne system should be researched carefully. The technology used to stabilize the channel interval should also be studied. In this thesis, the homodyne optical fiber communication system has been theoretically analyzed, the technical difficulties of constructing the system have been studied. Several kinds of external cavity semiconductor laser have been researched experimentally. Compared展开更多
We analyze a feasible high-sensitivity homodyne coherent optical receiver for demodulating optical quadrature phase-shift keying(QPSK). A fourth-power phase-lock loop based on a digital look-up table is used. Consider...We analyze a feasible high-sensitivity homodyne coherent optical receiver for demodulating optical quadrature phase-shift keying(QPSK). A fourth-power phase-lock loop based on a digital look-up table is used. Considering the non-negligible loop delay, we optimize the loop natural frequency. Without error correction coding, a sensitivity of -37 dBm/-35 dBm is achieved, while the bit error rate is below 10-9 at 2.5 Gbaud/5 Gbaud rate.For the QPSK communication system, the bit rate is twice the baud rate. The loop natural frequency is 0.647 Mrad/s, and the minimized steady-state phase-error standard deviation is 3.83°.展开更多
The dissipative Kerr soliton microcomb provides a promising laser source for wavelength-division multiplexing(WDM)communication systems thanks to its compatibility with chip integration.However,the soliton microcomb c...The dissipative Kerr soliton microcomb provides a promising laser source for wavelength-division multiplexing(WDM)communication systems thanks to its compatibility with chip integration.However,the soliton microcomb commonly suffers from a low-power level due to the intrinsically limited energy conversion efficiency from the continuous-wave pump laser to ultra-short solitary pulses.Here,we exploit laser injection locking to amplify and equalize dissipative Kerr soliton comb lines,superior gain factor larger than 30 dB,and optical-signal-to-noise-ratio(OSNR)as high as 60 dB obtained experimentally,providing a potential pathway to constitute a high-power chip-integrated WDM laser source for optical communications.展开更多
Probabilistically shaped(PS)high-order quadrature amplitude modulation(QAM)signals are attractive to coherent optical communication due to increased spectral efficiency.However,standard digital signal processing algor...Probabilistically shaped(PS)high-order quadrature amplitude modulation(QAM)signals are attractive to coherent optical communication due to increased spectral efficiency.However,standard digital signal processing algorithms are not optimal to demodulate PS high-order QAM signals.Therefore,a compromise equalization is indispensable to compensate the residual distortion.Meanwhile,the performance of conventional blind equalization highly depends on the accurate amplitude radius and distribution of the signals.The PS high-order QAM signals make the issue worsen because of indistinct amplitude distributions.In this work,we proposed an optimized blind equalization by utilizing a peak-density K-means clustering algorithm to accurately track the amplitude radius and distribution.We experimentally demonstrated the proposed method in a PS 256-QAM coherent optical transmission system and achieved approximately 1 dB optical signal-to-noise ratio improvement at the bit error rate of 1×10^(−3).展开更多
基金supported by National Natural Science Foundation of China (No. 61077053, 60932004, and60877045)National Basic Research Program of China(No. 2010CB328201)
文摘Fiber nonlinearity is one of the most important limiters of capacity in coherent optical communications. In this paper, we review two nonlinear compensation methods: digital backward propagation (BP) and nonlinear electrical equalizer (NLEE) based on the timedomain Volterra series. These compensation algorithms are implemented in a singlechannel 50 Gb/s coherent optical singlecarrier frequency division multiplexed (CO-SCFDM) system transmitting over 10 × 80 km of standard singlemode fiber (SSMF).
文摘The recently reported high spectral efficiency (SE) and high-baud-rate szgnal transmission are all Daseo on digital coherent optical communications and digital signal processing (DSP). DSP simplifies the re- ception of advanced modulation formats and also enables the major electrical and optical impairments to be processed and compensated in the digital domain, at the transmitter or receiver side. In this paper, we summarize the research progress on high-speed signal generation and detection and also show the progress on DSP for high-speed signal detection. We also report the latest progress on multi-core and multi-mode multiplexing.
基金Supported by the National Natural Science Foundation of China (60871075)
文摘An improved zero-interpolation method with signal clipping to improve fiber nonlinearity tolerance in the long-haul coherent optical orthogonal frequency division multiplexing system (CO-OFDM) is presented. The new technique is implemented by interpolating zero subcarriers and selecting the odd subcarriers to carry data and clipping conventional CO-OFDM signal at zero. With such a scheme,the effect of fiber nonlinearity can be miti-gated,and the wanted signal carried on odd subcarriers is or-thogonal to clipping noise,which falls on even frequencies. Simu-lation shows that the system Q value is improved by more than 2 dB at the length of 960 km
文摘Because it has the advantages of high sensitivity, and it is easy to demodulate and convenient to select in FDM system, the coherent optical fiber communication system is much suitable to be used in long distance optical communication systems and in optical fiber WANs. There are two major patterns in coherent optical fiber communication: heterodyne and homodyne. Compared with the heterodyne scheme, the homodyne optical fiber communication system has the following advantages: (1) The sensitivity of the homodyne receiver is higher than that of the heterodyne receiver. As we know, the PSK homodyne optical fiber communication system has the highest sensitivity in coherent optical fiber communication systems. So it is much suitable to be used in long distance optical communication systems or in FDM systems. (2) Because the homodyne receiver only uses the baseband to demodulate the transmitted signals, it occupies much narrower frequency domain than the heterodyne receiver does, which makes it more suitable to be used in multichannel systems. (3) The demodulation pattern used in homodyne receiver is much easier than that used in the heterodyne receiver, since it only needs the baseband demodulation. Usually we construct a homodyne receiver with an optical phase locked loop (OPLL). The research of the OPLL began at 1960′s and the study of the homodyne receiver has been made gradually. In 1984, the first homodyne optical fiber communication system was demonstrated in BTRL, in which the signal laser and the local laser were all 1.5 μm He Ne gas lasers, and the OPLL used was a balanced one. In 1989, L.G.Kazovsky demonstrated experimentally a homodyne receiver in Bellcore using two 1.3 μm Nd:YAG lasers as the signal laser and the local laser and also using a balanced OPLL. Because the linewidth of the normal semiconductor laser is too large and its frequency stability is much poorer, it is very difficult to construct a homodyne receiver with the semiconductor lasers. At the end of 1989, the first Dissertation completed Jul. 1992homodyne optical fiber communication system using two 1.5 μm external cavity semiconductor lasers as the signal laser and the local laser, respectively, was finished in AT&T Bell Lab by J. M. Kahn, in which the OPLL was also a balanced one. In China, the research of the homodyne optical fiber communication system was funded by the National Seventh Five Year Program and by the National Natural Science Foundation. The difficulties to construct a homodyne optical fiber communication system are listed as follows: (1) In homodyne communication systems, the signal laser′s frequency should be stable to avoid the penalty of the receiver′s BER and the crosstalk to other channels in a FDM system, and the local laser could be tuned widely and easily to cover all the signal lasers′ frequency domain. Both the signal laser and the local laser should be narrow in linewidth to decrease the influence of the laser′s phase noise on the BER of the receiver. (2) The modulation pattern used should be studied and chosen carefully because the requirements of different kinds of modulation on the laser, the receiver and the channel are different. (3) Since the construction of the linear OPLL (the balanced) and the nonlinear OPLL (the Costas OPLL, or the Decision Driven OPLL) are rather different, their requirements on the linewidths of the lasers are different too, we should study the theory and the construction of the OPLL carefully to select the suitable scheme to realize. (4) In a multichannel system (such as a FDM system), the influence of crosstalk between channels on the homodyne system should be researched carefully. The technology used to stabilize the channel interval should also be studied. In this thesis, the homodyne optical fiber communication system has been theoretically analyzed, the technical difficulties of constructing the system have been studied. Several kinds of external cavity semiconductor laser have been researched experimentally. Compared
文摘We analyze a feasible high-sensitivity homodyne coherent optical receiver for demodulating optical quadrature phase-shift keying(QPSK). A fourth-power phase-lock loop based on a digital look-up table is used. Considering the non-negligible loop delay, we optimize the loop natural frequency. Without error correction coding, a sensitivity of -37 dBm/-35 dBm is achieved, while the bit error rate is below 10-9 at 2.5 Gbaud/5 Gbaud rate.For the QPSK communication system, the bit rate is twice the baud rate. The loop natural frequency is 0.647 Mrad/s, and the minimized steady-state phase-error standard deviation is 3.83°.
基金supported by the National Key R&D Program of China(Nos.2019YFB-2203103 and 2018YFA0307400)the National Natural Science Foundation of China(NSFC)(Nos.62001086 and 61705033)。
文摘The dissipative Kerr soliton microcomb provides a promising laser source for wavelength-division multiplexing(WDM)communication systems thanks to its compatibility with chip integration.However,the soliton microcomb commonly suffers from a low-power level due to the intrinsically limited energy conversion efficiency from the continuous-wave pump laser to ultra-short solitary pulses.Here,we exploit laser injection locking to amplify and equalize dissipative Kerr soliton comb lines,superior gain factor larger than 30 dB,and optical-signal-to-noise-ratio(OSNR)as high as 60 dB obtained experimentally,providing a potential pathway to constitute a high-power chip-integrated WDM laser source for optical communications.
基金This work was supported in part by the National Key R&D Program of China(No.2020YFB1805805)the National Natural Science Foundation of China(No.62075147).
文摘Probabilistically shaped(PS)high-order quadrature amplitude modulation(QAM)signals are attractive to coherent optical communication due to increased spectral efficiency.However,standard digital signal processing algorithms are not optimal to demodulate PS high-order QAM signals.Therefore,a compromise equalization is indispensable to compensate the residual distortion.Meanwhile,the performance of conventional blind equalization highly depends on the accurate amplitude radius and distribution of the signals.The PS high-order QAM signals make the issue worsen because of indistinct amplitude distributions.In this work,we proposed an optimized blind equalization by utilizing a peak-density K-means clustering algorithm to accurately track the amplitude radius and distribution.We experimentally demonstrated the proposed method in a PS 256-QAM coherent optical transmission system and achieved approximately 1 dB optical signal-to-noise ratio improvement at the bit error rate of 1×10^(−3).