Oasis effect can improve the regional climate and habitability of an arid region. In this study, we explored the cold island effects of oases distributed along the edge of Tarim Basin by analyzing the oasis cold islan...Oasis effect can improve the regional climate and habitability of an arid region. In this study, we explored the cold island effects of oases distributed along the edge of Tarim Basin by analyzing the oasis cold island effect (OCIE) intensity, spatial-temporal variation of OCIE, factors influencing the OCIE and impacts of OCIE on air temperature using geographical statistics and GIS methods based on the MODIS land surface temperature, land use/cover change (LUCC) and observed air temperature data. Results showed that all the oases in the Tarim Basin exhibited cold island effects, with the OCIE intensity highest in summer (-9.08℃), followed by autumn (-4.24℃) and spring (-3.85℃). The total area of oasis cold island (OCI) and the comprehensive OCIE index showed the same seasonal change trend as the OCIE intensity. However, the changing trends in areas of OCI with strong, medium and weak OCIEs were inconsistent across different seasons. Farmland and water areas were found to be the key contributors that affected the OCIE, and the area and aggregation metrics of these two land use/cover types directly contributed to the OCIE. By contrast, natural vegetation, such as forest and grassland, almost had no contribution to the OCIE. Simulation of observed air temperature data showed that if farmland is replaced by forest or grassland in the oasis, the mean, maximum and minimum air temperatures will increase significantly. This heating effect will be higher in summer (reaching 1.14℃ to 2.08℃) and lower in spring and autumn. Moreover, the heating effect of farmland being replaced by forest will be higher than that of farmland being replaced by grassland. These results can provide a basis for understanding the cold island effect of oases in arid regions.展开更多
The cold-island effect of urban wetlands has received increasing attention in recent years due to its important role in the alleviation of urban heat islands.Hangzhou,a representative rapidly urbanizing city with rich...The cold-island effect of urban wetlands has received increasing attention in recent years due to its important role in the alleviation of urban heat islands.Hangzhou,a representative rapidly urbanizing city with rich wetlands in China,was selected as a case study for researching the changes that the urban wetlands have undergone and their impact on the urban thermal environment.Land surface temperature(LST) was acquired from the thermal infrared data of Landsat 5 Thematic Mapper(TM) images in 1990,1995,2000,2006,and 2010,using the single-channel method.The results are as follows:1) considering the changes in land use,the urban wetlands located to the west of Hangzhou have decreased significantly during 1990–2010 because of rapid urbanization.In the Xixi Wetland,the change in land use was relatively small and most of the water body and vegetation were preserved.However,to the east of the Xixi Wetland,large areas of water body and vegetation have been replaced by built-up land as a result of the urbanization process;2) considering the change in LST,it was found from land surface temperature retrieval that the changing spatial pattern of the thermal field was highly correlated with land use changes.Low temperature regions of the eastern Xixi Wetland were gradually eroded by high temperature regions,and the centroid of the heat island in East Xixi was found to be constantly shifting westward.In addition,the difference in LST between the Xixi Wetland and East Xixi has increased;3) considering the impact factors for this area,land use structure and patch shape were found to have a significant impact on LST,shown by the results of multiple linear stepwise regressions.Increasing the size of the wetlands in urban planning is considered to be the most effective measure in alleviating the urban heat island effect.Moreover,reducing the spatial complexity of landscape patches also contributes to the alleviation of the urban heat island effect.展开更多
Picoplankton distribution around the Zhangzi Island(northern Yellow Sea)was investigated by monthly observation from July 2009 to June 2010.Three picoplankton populations were discriminated by flow cytometry,namely ...Picoplankton distribution around the Zhangzi Island(northern Yellow Sea)was investigated by monthly observation from July 2009 to June 2010.Three picoplankton populations were discriminated by flow cytometry,namely Synechococcus,picoeukaryotes and heterotrophic prokaryotes.In summer(from July to September),the edge of the northern Yellow Sea Cold Water Mass(NYSCWM)resulting from water column stratification was observed.In the NYSCWM,picoplankton(including Synechococcus,picoeukaryotes and heterotrophic prokaryotes)distributed synchronically with extremely high abundance in the thermocline(20 m)in July and August(especially in August),whereas in the bottom zone of the NYSCWM(below 30 m),picoplankton abundance was quite low.Synechococcus,picoeukaryotes and heterotrophic prokaryotes showed similar response to the NYSCWM,indicating they had similar regulating mechanism under the influence of NYSCWM.Whereas in the non-NYSCWM,Synechococcus,picoeukaryotes and heterotrophic prokaryotes exhibited different distribution patterns,suggesting they had different controlling mechanisms.Statistical analysis indicated that temperature,nutrients(NO3^and PO4^3-)and ciliate were important factors in regulating picoplankton distribution.The results in this study suggested that the physical event NYSCWM,had strong influence on picoplankton distribution around the Zhangzi Island in the northern Yellow Sea.展开更多
Three seabed-mounted TD/CTD chains and two upward-looking acoustic Doppler current profilers (ADCPs) in the southwest of Zhangzi Island are used and a simultaneous cruise observation in the northern North Yellow Sea (...Three seabed-mounted TD/CTD chains and two upward-looking acoustic Doppler current profilers (ADCPs) in the southwest of Zhangzi Island are used and a simultaneous cruise observation in the northern North Yellow Sea (NYS) is conducted to study temperature variation in the bottom thermal front zone of the NYS Cold Water Mass (NYSCWM) during the summer of 2009. In the flood-ebb tidal cycles, the bottom temperature decreases (increases) during flood (ebb) tides, which are dominated by the tidal-current induced horizontal advection. The ebb tide-induced temperature increase is larger than the flood tide-induced tempera- ture decrease due to seasonal warming. In the spring-neap tidal cycles, the temperature and the vertical temperature structure show notable fortnightly variation from 16 July to 25 August. The bottom temperature increases from neap to spring tides and decreases from spring to neap. The Richardson number demonstrates strengthened vertical mixing during spring tides but enhanced stratifica- tion during neap tides. The spring-neap variation in vertical shear caused by tidal current is the dominant factor that induces the fort- nightly variation in vertical mixing and thus bottom temperature.展开更多
由海事咨询计划顾问、阿拉斯加大学费尔班克斯分校渔业与海洋科学学院教授特里·约翰逊撰写的《The Bering Sea and Aleutian Island:Region of Wonders》一书于2003年由阿拉斯加海洋基金出版。该书一共分为八章,共191页,450多张彩...由海事咨询计划顾问、阿拉斯加大学费尔班克斯分校渔业与海洋科学学院教授特里·约翰逊撰写的《The Bering Sea and Aleutian Island:Region of Wonders》一书于2003年由阿拉斯加海洋基金出版。该书一共分为八章,共191页,450多张彩色照片、地图等图件,88条参考文献,对白令海和阿留申群岛及其周边区域的水文地理特征进行了详细的描述。包括地理要素、自然环境、人文生态,以及资源能源等方面的内容。特里·约翰逊梳理了白令海和阿留申群岛区域水文地理探索的新成果,对中国寒区海域认识和研究具有重要的参考价值。展开更多
This study aimed to accurately study the intra-annual spatiotemporal variation in the surface urban heat island intensities(SUHIIs) in 1449 cities in China.First, China was divided into five environmental regions.Then...This study aimed to accurately study the intra-annual spatiotemporal variation in the surface urban heat island intensities(SUHIIs) in 1449 cities in China.First, China was divided into five environmental regions.Then, the SUHIIs were accurately calculated based on the modified definitions of the city extents and their corresponding nearby rural areas.Finally, we explored the spatiotemporal variation of the mean, maximum, and minimum values, and ranges of SUHIIs from several aspects.The results showed that larger annual mean daytime SUHIIs occurred in hot-humid South China and cold-humid northeastern China, and the smallest occurred in arid and semiarid west China.The seasonal order of the SUHIIs was summer > spring > autumn > winter in all the temperate regions except west China.The SUHIIs were obviously larger during the rainy season than the dry season in the tropical region.Nevertheless, significant differences were not observed between the two seasons within the rainy or dry periods.During the daytime, the maximum SUHIIs mostly occurred in summer in each region, while the minimum occurred in winter.A few cold island phenomena existed during the nighttime.The maximum SUHIIs were generally significantly positively correlated with the minimum SUHIIs during the daytime, nighttime and all-day in all environmental regions throughout the year and the four seasons.Moreover, significant correlation scarcely existed between the daytime and nighttime ranges of the SUHIIs.In addition, the daytime SUHIIs were also insignificantly correlated with the nighttime SUHIIs in half of the cases.展开更多
基金funded by the National Natural Science Foundation of China(41571109)
文摘Oasis effect can improve the regional climate and habitability of an arid region. In this study, we explored the cold island effects of oases distributed along the edge of Tarim Basin by analyzing the oasis cold island effect (OCIE) intensity, spatial-temporal variation of OCIE, factors influencing the OCIE and impacts of OCIE on air temperature using geographical statistics and GIS methods based on the MODIS land surface temperature, land use/cover change (LUCC) and observed air temperature data. Results showed that all the oases in the Tarim Basin exhibited cold island effects, with the OCIE intensity highest in summer (-9.08℃), followed by autumn (-4.24℃) and spring (-3.85℃). The total area of oasis cold island (OCI) and the comprehensive OCIE index showed the same seasonal change trend as the OCIE intensity. However, the changing trends in areas of OCI with strong, medium and weak OCIEs were inconsistent across different seasons. Farmland and water areas were found to be the key contributors that affected the OCIE, and the area and aggregation metrics of these two land use/cover types directly contributed to the OCIE. By contrast, natural vegetation, such as forest and grassland, almost had no contribution to the OCIE. Simulation of observed air temperature data showed that if farmland is replaced by forest or grassland in the oasis, the mean, maximum and minimum air temperatures will increase significantly. This heating effect will be higher in summer (reaching 1.14℃ to 2.08℃) and lower in spring and autumn. Moreover, the heating effect of farmland being replaced by forest will be higher than that of farmland being replaced by grassland. These results can provide a basis for understanding the cold island effect of oases in arid regions.
基金Under the auspices of National Natural Science Foundation of China(No.41101039,41371068)
文摘The cold-island effect of urban wetlands has received increasing attention in recent years due to its important role in the alleviation of urban heat islands.Hangzhou,a representative rapidly urbanizing city with rich wetlands in China,was selected as a case study for researching the changes that the urban wetlands have undergone and their impact on the urban thermal environment.Land surface temperature(LST) was acquired from the thermal infrared data of Landsat 5 Thematic Mapper(TM) images in 1990,1995,2000,2006,and 2010,using the single-channel method.The results are as follows:1) considering the changes in land use,the urban wetlands located to the west of Hangzhou have decreased significantly during 1990–2010 because of rapid urbanization.In the Xixi Wetland,the change in land use was relatively small and most of the water body and vegetation were preserved.However,to the east of the Xixi Wetland,large areas of water body and vegetation have been replaced by built-up land as a result of the urbanization process;2) considering the change in LST,it was found from land surface temperature retrieval that the changing spatial pattern of the thermal field was highly correlated with land use changes.Low temperature regions of the eastern Xixi Wetland were gradually eroded by high temperature regions,and the centroid of the heat island in East Xixi was found to be constantly shifting westward.In addition,the difference in LST between the Xixi Wetland and East Xixi has increased;3) considering the impact factors for this area,land use structure and patch shape were found to have a significant impact on LST,shown by the results of multiple linear stepwise regressions.Increasing the size of the wetlands in urban planning is considered to be the most effective measure in alleviating the urban heat island effect.Moreover,reducing the spatial complexity of landscape patches also contributes to the alleviation of the urban heat island effect.
基金The National Natural Science Foundation of China under contract Nos 41306160the NSFC-Shandong Joint Fund for Marine Science Research Centers under contract No.U1606404the Strategic Priority Research Program of the Chinese Academy of Sciences under contract No.XDA11020103.1
文摘Picoplankton distribution around the Zhangzi Island(northern Yellow Sea)was investigated by monthly observation from July 2009 to June 2010.Three picoplankton populations were discriminated by flow cytometry,namely Synechococcus,picoeukaryotes and heterotrophic prokaryotes.In summer(from July to September),the edge of the northern Yellow Sea Cold Water Mass(NYSCWM)resulting from water column stratification was observed.In the NYSCWM,picoplankton(including Synechococcus,picoeukaryotes and heterotrophic prokaryotes)distributed synchronically with extremely high abundance in the thermocline(20 m)in July and August(especially in August),whereas in the bottom zone of the NYSCWM(below 30 m),picoplankton abundance was quite low.Synechococcus,picoeukaryotes and heterotrophic prokaryotes showed similar response to the NYSCWM,indicating they had similar regulating mechanism under the influence of NYSCWM.Whereas in the non-NYSCWM,Synechococcus,picoeukaryotes and heterotrophic prokaryotes exhibited different distribution patterns,suggesting they had different controlling mechanisms.Statistical analysis indicated that temperature,nutrients(NO3^and PO4^3-)and ciliate were important factors in regulating picoplankton distribution.The results in this study suggested that the physical event NYSCWM,had strong influence on picoplankton distribution around the Zhangzi Island in the northern Yellow Sea.
基金supported by the National Natural Science Foundation of China (Nos. U1706215, 41506012, 41430963 and 41606005)
文摘Three seabed-mounted TD/CTD chains and two upward-looking acoustic Doppler current profilers (ADCPs) in the southwest of Zhangzi Island are used and a simultaneous cruise observation in the northern North Yellow Sea (NYS) is conducted to study temperature variation in the bottom thermal front zone of the NYS Cold Water Mass (NYSCWM) during the summer of 2009. In the flood-ebb tidal cycles, the bottom temperature decreases (increases) during flood (ebb) tides, which are dominated by the tidal-current induced horizontal advection. The ebb tide-induced temperature increase is larger than the flood tide-induced tempera- ture decrease due to seasonal warming. In the spring-neap tidal cycles, the temperature and the vertical temperature structure show notable fortnightly variation from 16 July to 25 August. The bottom temperature increases from neap to spring tides and decreases from spring to neap. The Richardson number demonstrates strengthened vertical mixing during spring tides but enhanced stratifica- tion during neap tides. The spring-neap variation in vertical shear caused by tidal current is the dominant factor that induces the fort- nightly variation in vertical mixing and thus bottom temperature.
文摘由海事咨询计划顾问、阿拉斯加大学费尔班克斯分校渔业与海洋科学学院教授特里·约翰逊撰写的《The Bering Sea and Aleutian Island:Region of Wonders》一书于2003年由阿拉斯加海洋基金出版。该书一共分为八章,共191页,450多张彩色照片、地图等图件,88条参考文献,对白令海和阿留申群岛及其周边区域的水文地理特征进行了详细的描述。包括地理要素、自然环境、人文生态,以及资源能源等方面的内容。特里·约翰逊梳理了白令海和阿留申群岛区域水文地理探索的新成果,对中国寒区海域认识和研究具有重要的参考价值。
基金Under the auspices of National Natural Science Foundation of China(No.41901238,41701501)Social Science Fund of China(General Projects)(No.17BJL065)+1 种基金Key Scientific and Technological Project of Henan Province(No.192102310003)Educational Commission of Henan Province(No.2019-ZZJH-094)
文摘This study aimed to accurately study the intra-annual spatiotemporal variation in the surface urban heat island intensities(SUHIIs) in 1449 cities in China.First, China was divided into five environmental regions.Then, the SUHIIs were accurately calculated based on the modified definitions of the city extents and their corresponding nearby rural areas.Finally, we explored the spatiotemporal variation of the mean, maximum, and minimum values, and ranges of SUHIIs from several aspects.The results showed that larger annual mean daytime SUHIIs occurred in hot-humid South China and cold-humid northeastern China, and the smallest occurred in arid and semiarid west China.The seasonal order of the SUHIIs was summer > spring > autumn > winter in all the temperate regions except west China.The SUHIIs were obviously larger during the rainy season than the dry season in the tropical region.Nevertheless, significant differences were not observed between the two seasons within the rainy or dry periods.During the daytime, the maximum SUHIIs mostly occurred in summer in each region, while the minimum occurred in winter.A few cold island phenomena existed during the nighttime.The maximum SUHIIs were generally significantly positively correlated with the minimum SUHIIs during the daytime, nighttime and all-day in all environmental regions throughout the year and the four seasons.Moreover, significant correlation scarcely existed between the daytime and nighttime ranges of the SUHIIs.In addition, the daytime SUHIIs were also insignificantly correlated with the nighttime SUHIIs in half of the cases.