The coarsening behaviors of γ″-phase particles in Inconel 718 alloy aged at 750, 800, and 850℃ were investigated by scanning electron microscopy(SEM). Detailed observations and quantitative measurements were cond...The coarsening behaviors of γ″-phase particles in Inconel 718 alloy aged at 750, 800, and 850℃ were investigated by scanning electron microscopy(SEM). Detailed observations and quantitative measurements were conducted to characterize the coarsening behavior of the γ″-phase under various aging conditions. The experimental results indicate that the existence of the δ-phase retards the formation and coarsening of the γ″-phase, without influencing its final particle size or amount. Moreover, when cold rolled with a reduction of 50%, the dimensions of the γ″ particles in Inconel 718 alloy decrease with increasing aging time. Furthermore, the coarsening behavior of the γ″-phase in the Inconel 718 alloy after a normal aging treatment(sample A) and that of the primary δ-phase(sample B) follow the Lifshitz–Slyozov–Wagner(LSW) diffusion-controlled growth theory; the thus-obtained activation energies for the γ″-phase are 292 k J·mol^-1 and 302 k J·mol^-1, respectively.展开更多
An extraordinary rainstorm that occurred in Beijing on 21 July 2012 was simulated using the Weather Research and Forecasting model. The results showed that:(1) The two precipitation phases were based on a combination ...An extraordinary rainstorm that occurred in Beijing on 21 July 2012 was simulated using the Weather Research and Forecasting model. The results showed that:(1) The two precipitation phases were based on a combination of cold cloud processes and warm cloud processes. The accumulated conversion amount and conversion rate of microphysical processes in the warm-area phase were all much larger than those in the cold front phase.(2) 72.6% of rainwater was from the warm-area phase. Rainwater mainly came from the melting of graupel and the melting of snow, while the accretion of cloud water by rain ranked second.(3) The net heating rate with height appeared as an overall warming with two strong heating centers in the lower and middle layers of the troposphere and a minimum heating center around the melting layer. The net heating effect in the warm-area phase was stronger than that in the cold front phase.(4) Warm cloud processes contributed most to latent heat release, and the thermal effect of cold cloud processes on the storm in the cold front phase was enhanced compared to that in the warm-area phase.(5) The melting of graupel and snow contributed most to latent heat absorption, and the effect of the evaporation of rainwater was significantly reduced in the cold front phase.展开更多
基金the China National Funds for Distinguished Young Scientists (No.51325401)the National High Technology Research and Development Program of China (No.2015AA042504)the National Natural Science Foundation of China (No.51474156) for grant and financial support
文摘The coarsening behaviors of γ″-phase particles in Inconel 718 alloy aged at 750, 800, and 850℃ were investigated by scanning electron microscopy(SEM). Detailed observations and quantitative measurements were conducted to characterize the coarsening behavior of the γ″-phase under various aging conditions. The experimental results indicate that the existence of the δ-phase retards the formation and coarsening of the γ″-phase, without influencing its final particle size or amount. Moreover, when cold rolled with a reduction of 50%, the dimensions of the γ″ particles in Inconel 718 alloy decrease with increasing aging time. Furthermore, the coarsening behavior of the γ″-phase in the Inconel 718 alloy after a normal aging treatment(sample A) and that of the primary δ-phase(sample B) follow the Lifshitz–Slyozov–Wagner(LSW) diffusion-controlled growth theory; the thus-obtained activation energies for the γ″-phase are 292 k J·mol^-1 and 302 k J·mol^-1, respectively.
基金supported by the National Basic Research Program of China (973 Program, Grant Nos. 2013CB430105 and 2014CB441403)the National Natural Science Foundation of China (Grant No. 41205099)+1 种基金Guizhou Province Scientific Research Joint Project (Grant No. G[2013]4001)the Special Scientific Research Project of Meteorological Public Welfare Profession of China (Grant No. GYHY201006031)
文摘An extraordinary rainstorm that occurred in Beijing on 21 July 2012 was simulated using the Weather Research and Forecasting model. The results showed that:(1) The two precipitation phases were based on a combination of cold cloud processes and warm cloud processes. The accumulated conversion amount and conversion rate of microphysical processes in the warm-area phase were all much larger than those in the cold front phase.(2) 72.6% of rainwater was from the warm-area phase. Rainwater mainly came from the melting of graupel and the melting of snow, while the accretion of cloud water by rain ranked second.(3) The net heating rate with height appeared as an overall warming with two strong heating centers in the lower and middle layers of the troposphere and a minimum heating center around the melting layer. The net heating effect in the warm-area phase was stronger than that in the cold front phase.(4) Warm cloud processes contributed most to latent heat release, and the thermal effect of cold cloud processes on the storm in the cold front phase was enhanced compared to that in the warm-area phase.(5) The melting of graupel and snow contributed most to latent heat absorption, and the effect of the evaporation of rainwater was significantly reduced in the cold front phase.