期刊文献+
共找到45,184篇文章
< 1 2 250 >
每页显示 20 50 100
Extracellular enzymatic activities of cold-adapted bacteria from polar oceans and effect of temperature and salinity on cell growth 被引量:3
1
作者 曾胤新 俞勇 +1 位作者 陈波 李会荣 《Chinese Journal of Polar Science》 2004年第2期118-128,共11页
The potential of 324 bacteria isolated from different habitats in polar oceans to produce a variety of extracellular enzymatic activities at low temperature was investigated. By plate assay, lipase, protease, amylase,... The potential of 324 bacteria isolated from different habitats in polar oceans to produce a variety of extracellular enzymatic activities at low temperature was investigated. By plate assay, lipase, protease, amylase, gelatinase, agarase, chitinase or cellulase were detected. Lipases were generally present by bacteria living in polar oceans. Protease-producing bacteria held the second highest proportion in culturable isolates. Strains producing amylase kept a relative stable proportion of around 30% in different polar marine habitats. All 50 Arctic sea-ice bacteria producing proteases were cold-adapted strains, however, only 20% were psychrophilic. 98% of them could grow at 3% NaCl, and 56% could grow without NaCl. On the other hand, 98% of these sea-ice bacteria produced extracellular proteases with optimum temperature at or higher than 35℃, well above the upper temperature limit of cell growth. Extracellular enzymes including amylase, agarase, cellulase and lipase released by bacteria from seawater or sediment in polar oceans, most expressed maximum activities between 25 and 35℃. Among extracellular enzymes released by bacterial strain BSw20308, protease expressed maximum activity at 40℃, higher than 35℃ of polysaccharide hydrolases and 25℃ of lipase. 展开更多
关键词 Enzyme cold-adapted bacteria polar ocean.
下载PDF
Thermostable ethanol tolerant xylanase from a cold-adapted marine species Acinetobacter johnsonii 被引量:3
2
作者 Dongsheng Xue Xuhao Zeng +1 位作者 Dongqiang Lin Shanjing Yao 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2019年第5期1166-1170,共5页
A xylanase-producing bacterium, isolated from deep sea sediments, was identified as the cold-adapted marine species Acinetobacter Johnsonii. A cold-adapted marine species Acinetobacter Johnsonii could grow at 4 ℃. Th... A xylanase-producing bacterium, isolated from deep sea sediments, was identified as the cold-adapted marine species Acinetobacter Johnsonii. A cold-adapted marine species Acinetobacter Johnsonii could grow at 4 ℃. The optimum temperature and pH of xylanase from a cold-adapted marine species Acinetobacter Johnsonii were 55 ℃ and pH 6.0. Xylanase from a cold-adapted marine species Acinetobacter Johnsonii remained at 80% activity after incubation for 1 h at 65 ℃. The xylanase activity was 1.2-fold higher in 4% ethanol solution than in ethanol free solution. Gibbs free energy of denaturation, ΔG, was higher in 4% ethanol solution than in ethanol free solution. Thermostable ethanol tolerant xylanase was valuable for bioethanol production by simultaneous saccharification and fermentation process with xylan as a carbon source. 展开更多
关键词 XYLANASE ETHANOL TOLERANT THERMOSTABLE cold-adapted ACINETOBACTER Johnsonii
下载PDF
Fermentation Performance and Characterization of Cold-Adapted Lipase Produced with Pseudomonas Lip35 被引量:2
3
作者 YU Hong-wei HAN Jun LI Ning QIE Xiao-sha JIAYing-min 《Agricultural Sciences in China》 CAS CSCD 2009年第8期956-962,共7页
Strain of Pseudomonas Lip35 producing lipase was isolated in a refrigerator. Lipase production and characterization of this strain were investigated under different conditions. The Pseudomonas was cultivated in shakin... Strain of Pseudomonas Lip35 producing lipase was isolated in a refrigerator. Lipase production and characterization of this strain were investigated under different conditions. The Pseudomonas was cultivated in shaking flasks in a fermentation medium in various nutritional and physical environments. Lipase production has been influenced by the presence of yeast-extract, soybean powder, NaCI, and Tween-80. Maximum lipase productivity was obtained when the physical environment of the fermentation medium was optimal for 67 h. The production of lipase reached 58.9 U·mL^-1. The lipase of Pseudomonas Lip35 can be considered to be inducible, but the inducer had little influence on the production of lipase. The lipase was characterized and showed high lipolytic activity from pH 7.5-8.0. The optimum temperature was observed at 20℃ and the thermal inactivation of lipase was obvious at 60℃. The lipase activity was inhibited by K+, stimulated by Ca^2+, and thermostability decreased in the presence of Ca^2+, therefore the lipase was Ca^2+ -dependent cold-adapted enzyme. 展开更多
关键词 cold-adapted lipase fermentation optimization lipase characterization Pseudomonas Lip35
下载PDF
Gene cloning and sequence analysis of the cold-adapted chaperones DnaK and DnaJ from deep-sea psychrotrophic bacterium Pseudoalteromonas sp. SM9913 被引量:1
4
作者 ZHAO Dianli CHEN Xiulan HE Hailun SHI Mei ZHANG Yuzhong 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2007年第6期91-100,共10页
Pseudoalteromonas sp. SM9913 is a phychrotmphic bacterium isolated from the deep-sea sediment. The genes encoding chaperones DnaJ and DnaK of P. sp. SM9913 were cloned by normal PCR and TAIL - PCR (GenBank accession ... Pseudoalteromonas sp. SM9913 is a phychrotmphic bacterium isolated from the deep-sea sediment. The genes encoding chaperones DnaJ and DnaK of P. sp. SM9913 were cloned by normal PCR and TAIL - PCR (GenBank accession Nos DQ640312, DQ504163 ). The chaperones DnaJ and DnaK from the strain SM9913 contain such conserved domains as those of many other bacteria, and show some cold-adapted characteristics in their structures when compared with those from psychro-, meso-and themophilic bacteria. It is indicated that chaperones DnaJ and DnaK of P. sp. SM9913 may be adapted to low temperature in deep-sea and function well in assisting folding, assembling and translocation of proteins at low temperature. This research lays a foundation for the further study on the cold-adapted mechanism of chaperones DnaJ and DnaK of cold-adapted microorganisms. 展开更多
关键词 cold-adapted chaperone DNAJ DNAK DEEP-SEA Pseudoalteromonas sp. SM9913 gene cloning sequence analysis
下载PDF
Insight into the spoilage heterogeneity of meat-borne bacteria isolates with high-producing collagenase 被引量:2
5
作者 Haodong Wang Liangting Shao +3 位作者 Jinhao Zhang Xinglian Xu Jianjun Li Huhu Wang 《Food Science and Human Wellness》 SCIE CSCD 2024年第3期1402-1409,共8页
Chilled chicken is inevitably contaminated by microorganisms during slaughtering and processing,resulting in spoilage.Cutting parts of chilled chicken,especially wings,feet,and other skin-on products,are abundant in c... Chilled chicken is inevitably contaminated by microorganisms during slaughtering and processing,resulting in spoilage.Cutting parts of chilled chicken,especially wings,feet,and other skin-on products,are abundant in collagen,which may be the primary target for degradation by spoilage microorganisms.In this work,a total of 17 isolates of spoilage bacteria that could secrete both collagenase and lipase were determined by raw-chicken juice agar(RJA)method,and the results showed that 7 strains of Serratia,Aeromonas,and Pseudomonas could significantly decompose the collagen ingredients.The gelatin zymography showed that Serratia liquefaciens(F5)and(G7)had apparent degradation bands around 50 kDa,and Aeromonas veronii(G8)and Aeromonas salmonicida(H8)had a band around.65 and 95 kDa,respectively.The lipase and collagenase activities were detected isolate-by-isolate,with F5 showing the highest collagenase activity.For spoilage ability on meat in situ,F5 performed strongest in spoilage ability,indicated by the total viable counts,total volatile basic nitrogen content,sensory scores,lipase,and collagenase activity.This study provides a theoretical basis for spoilage heterogeneity of strains with high-producing collagenase in meat. 展开更多
关键词 bacteria Chilled chicken HETEROGENEITY COLLAGENASE SPOILAGE
下载PDF
Multifunctional role of oral bacteria in the progression of nonalcoholic fatty liver disease 被引量:1
6
作者 En-Hua Mei Chao Yao +2 位作者 Yi-Nan Chen Shun-Xue Nan Sheng-Cai Qi 《World Journal of Hepatology》 2024年第5期688-702,共15页
Non-alcoholic fatty liver disease(NAFLD)encompasses a spectrum of liver disorders of varying severity,ultimately leading to fibrosis.This spectrum primarily consists of NAFL and non-alcoholic steatohepatitis.The patho... Non-alcoholic fatty liver disease(NAFLD)encompasses a spectrum of liver disorders of varying severity,ultimately leading to fibrosis.This spectrum primarily consists of NAFL and non-alcoholic steatohepatitis.The pathogenesis of NAFLD is closely associated with disturbances in the gut micr-obiota and impairment of the intestinal barrier.Non-gut commensal flora,particularly bacteria,play a pivotal role in the progression of NAFLD.Notably,Porphyromonas gingivalis,a principal bacterium involved in periodontitis,is known to facilitate lipid accumulation,augment immune responses,and induce insulin resistance,thereby exacerbating fibrosis in cases of periodontitis-associated NAFLD.The influence of oral microbiota on NAFLD via the“oral-gut-liver”axis is gaining recognition,offering a novel perspective for NAFLD management through microbial imbalance correction.This review endeavors to encapsulate the intricate roles of oral bacteria in NAFLD and explore underlying mechanisms,emphasizing microbial control strategies as a viable therapeutic avenue for NAFLD. 展开更多
关键词 Non-alcoholic fatty liver disease Oral bacteria Gut bacteria PERIODONTITIS Non-alcoholic steatohepatitis
下载PDF
Modern approaches for detection of volatile organic compounds in metabolic studies focusing on pathogenic bacteria:Current state of the art 被引量:2
7
作者 Karolina Zuchowska Wojciech Filipiak 《Journal of Pharmaceutical Analysis》 SCIE CAS CSCD 2024年第4期483-505,共23页
Pathogenic microorganisms produce numerous metabolites,including volatile organic compounds(VOCs).Monitoring these metabolites in biological matrices(e.g.,urine,blood,or breath)can reveal the presence of specific micr... Pathogenic microorganisms produce numerous metabolites,including volatile organic compounds(VOCs).Monitoring these metabolites in biological matrices(e.g.,urine,blood,or breath)can reveal the presence of specific microorganisms,enabling the early diagnosis of infections and the timely implementation of tar-geted therapy.However,complex matrices only contain trace levels of VOCs,and their constituent com-ponents can hinder determination of these compounds.Therefore,modern analytical techniques enabling the non-invasive identification and precise quantification of microbial VOCs are needed.In this paper,we discuss bacterial VOC analysis under in vitro conditions,in animal models and disease diagnosis in humans,including techniques for offline and online analysis in clinical settings.We also consider the advantages and limitations of novel microextraction techniques used to prepare biological samples for VOC analysis,in addition to reviewing current clinical studies on bacterial volatilomes that address inter-species in-teractions,the kinetics of VOC metabolism,and species-and drug-resistance specificity. 展开更多
关键词 Volatile organic compounds Pathogenic bacteria metabolites Metabolomics Microextraction techniques Gas chromatography-mass spectrometry In vivo breath analysis In vitro model
下载PDF
Preparation of lactic acid bacteria compound starter cultures based on pasting properties and its improvement of glutinous rice flour and dough 被引量:1
8
作者 Dengyu Wang Linlin Liu +4 位作者 Bing Wang Wenjian Xie Yanguo Shi Na Zhang Hongchen Fan 《Food Science and Human Wellness》 SCIE CAS CSCD 2024年第4期2090-2101,共12页
The effects of 5 lactic acid bacteria(LAB)fermentation on the pasting properties of glutinous rice flour were compared,and suitable fermentation strains were selected based on the changes of viscosity,setback value,an... The effects of 5 lactic acid bacteria(LAB)fermentation on the pasting properties of glutinous rice flour were compared,and suitable fermentation strains were selected based on the changes of viscosity,setback value,and breakdown value to prepare LAB compound starter cultures.The results revealed that Latilactobacillus sakei HSD004 and Lacticaseibacillus rhamnosus HSD005 had apparent advantages in increasing the viscosity and reducing the setback and breakdown values of glutinous rice flour.In particular,the compound starter created using the two abovementioned LAB in the ratio of 3:1 had better performance than that using a single LAB in improving the pasting properties and increasing the water and oil absorption capacity of glutinous rice flour.Moreover,the gelatinization enthalpy of the fermented samples increased significantly.For frozen glutinous rice dough stored for 28 days,the viscoelasticity of frozen dough prepared by compound starter was better than that of control dough,and the freezable water content was lower than that of control dough.These results indicate that compound LAB fermentation is a promising technology in the glutinous rice-based food processing industry,which has significance for its application. 展开更多
关键词 Glutinous rice flour Glutinous rice dough Lactic acid bacteria compound starter cultures Pasting properties VISCOELASTICITY
下载PDF
Antiseptic Efficacy of A Soap Made from Biosurfactants Isolated from Bacillus and Lactobacillus against Pathogenic Bacteria
9
作者 Frédéric Yannick Okouakoua Christian Aimé Kayath +10 位作者 Nicaise Saturnin Mokémiabeka Varelle Bervanie Ngala Elenga Digne Nedjea N’goma-Mona Ndelani Nkalla Lambi Sandra Paola Elenga Wilson Christ Dieuveil Bayakissa Malanda Rodinet Tsana Junior Patrick Sergy Bissoko1 Moïse Doria Kaya-Ongoto Duchel Jeanedvi Kinavouidi Etienne Nguimbi 《Advances in Microbiology》 CAS 2024年第1期31-58,共28页
The aim of our study was to use a biosurfactant produced by Bacillus and Lactobacillus isolates as an antiseptic in the formulation of local soap. A total of 60 isolates were characterized by microbiological technique... The aim of our study was to use a biosurfactant produced by Bacillus and Lactobacillus isolates as an antiseptic in the formulation of local soap. A total of 60 isolates were characterized by microbiological techniques (30 Bacillus and 30 Lactobacillus) and the ability to produce biosurfactants was demonstrated by a hydrocarbon emulsification index (E24). The emulsification indexes (E24) varied from 9% to 100% for Bacillus and from 33% to 100% for Lactobacillus as well. The antagonistic assay showed that biosurfactants were able to inhibit the formation of biofilms and growth of pathogens such as Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, Bacillus cereus, Salmonella typhirium, Shigella boydii and Proteus mirabilis. The biosurfactant consortium (BioC) from Bacillus consortium and from Lactobacillus was able to inhibit biofilm formation and the pathogens growth. The BioC was stable to alkaline pH and the temperatures stability of Biosurfactant was ranging from 50°C to 90°C. The soap was made by the cold saponification process using one biosurfactant consortium formulated. This soap has a pH of 10 and showed good cleaning power and good foam stability. Similarly, the soap showed good antiseptic power and disinfection power against all pathogens tested. Handwashing is critical to preventing disease transmission. The persistence of pathogens in waste water was evaluated. The BioS produced showed good disinfection power against all pathogens tested. The valor of reduction on the hands and in the waste water was significantly more than compared to the control soaps used. This soap could be used in the prevention, fighting, and treatment of bacterial and viral infections. 展开更多
关键词 ANTISEPTIC SOAP Biosurfactants BACILLUS LACTOBACILLUS DISINFECTION Pathogens bacteria
下载PDF
Diarrheal Diseases: A Review on Gastroenteritis Bacteria Global Burden and Alternative Control of Multidrug-Resistant Strains
10
作者 Ahéhéhinnou Ulrich Hilarion Adjovi Yann Christie Sissinto Fossou Joli Prince Mintognissè 《Advances in Microbiology》 CAS 2024年第10期493-512,共20页
Diarrheal diseases represent a significant and pervasive health challenge for humanity. The aetiology of diarrheal diseases is typically associated with the presence of enteropathogens, including viruses, bacteria and... Diarrheal diseases represent a significant and pervasive health challenge for humanity. The aetiology of diarrheal diseases is typically associated with the presence of enteropathogens, including viruses, bacteria and parasites. The implementation of preventive measures, including the maintenance of good food hygiene, effective water sanitation, and the development of rotavirus vaccines, has resulted in a notable reduction in the prevalence of the disease. However, the emergence of bacterial multidrug resistance due to the past or present inappropriate use of antibiotics has rendered bacterial infections a significant challenge. The objective of this review is threefold: firstly, to provide an overview of diarrheal diseases associated with bacteria;secondly, to offer a concise analysis of bacterial multidrug resistance on a global scale;and thirdly, to present the potential of filamentous fungi as an alternative solution to the challenge posed by multidrug-resistant strains. Campylobacter spp. is the most dangerous bacteria, followed by Shigella spp. and Vibrio cholerae in all age groups combined. However, Shigella spp. was the deadliest in children under five years of age and, together with E. coli, are the most antibiotic-resistant bacteria. With their highly developed secondary metabolism, fungi are a reservoir of natural bioactive compounds. 展开更多
关键词 Diarrheal Disease bacteria Multidrug Resistance Fungal Metabolites
下载PDF
The Preliminary Study on Screening and Application of Phthalic Acid-Degrading Bacteria
11
作者 Honghao Zhang Lin Yang +3 位作者 Rubing Xu Yuxiao Sun Yong Yang Yanyan Li 《Advances in Microbiology》 CAS 2024年第4期226-239,共14页
Phthalic acid is a main pollutant, which is also an important reason for the continuous cropping effect of tobacco. In order to degrade the phthalic acid accumulated in the environment and relieve the obstacle effect ... Phthalic acid is a main pollutant, which is also an important reason for the continuous cropping effect of tobacco. In order to degrade the phthalic acid accumulated in the environment and relieve the obstacle effect of tobacco continuous cropping caused by the accumulation of phthalic acid in the soil. In this study, phthalate degrading bacteria B3 is screened from continuous cropping tobacco soil. The results of biochemical identification and 16sDNA comparison show that the homology between degrading bacterium B3 and Enterobacter sp. is 99%. At the same time, the growth of Enterobacter hormaechei subsp. B3 and the degradation of phthalic acid under different environmental conditions are studied. The results show that the environment with a temperature of 30˚C, PH of 7, and inoculation amount of not less than 1.2%, which is the optimal growth conditions for Enterobacter sp. B3. In an environment with a concentration of phthalic acid not exceeding 500 mg/L, Enterobacter sp. B3 has a better effect on phthalic acid degradation, and the degradation rate can reach 77% in 7 d. The results of indoor potting experiments on tobacco show that the degradation rate of phthalic acid by Enterobacter B3 in the soil is about 45%, which can reduce the inhibitory effect of phthalic acid on the growth of tobacco seedlings. This study enriches the microbial resources for degrading phthalic acid and provides a theoretical basis for alleviating tobacco continuous cropping obstacles. 展开更多
关键词 Phthalic Acid Degrading bacteria Rhizosphere Soil
下载PDF
Nature’s Pharmacy under Siege: Investigating Antibiotic Resistance Pattern in Endophytic Bacteria of Medicinal Plants
12
作者 Bonoshree Sarkar Afroza Sultana +5 位作者 Nabila Nawar Binti Farhana Tasnim Chowdhury Sadia Afrin Mohammad Fahim Taibur Rahman Atiqur Rahman 《Advances in Microbiology》 CAS 2024年第4期183-208,共26页
Antibiotic resistance poses a significant global health threat, necessitating a thorough understanding of its prevalence in various ecological contexts. Medicinal plants, renowned for their therapeutic properties, hos... Antibiotic resistance poses a significant global health threat, necessitating a thorough understanding of its prevalence in various ecological contexts. Medicinal plants, renowned for their therapeutic properties, host endophytic bacteria that produce bioactive compounds. Understanding antibiotic resistance dynamics in these bacteria is vital for human health and antibiotic efficacy preservation. In this study, we investigated antibiotic resistance profiles in endophytic bacteria from five medicinal plants: Thankuni, Neem, Aparajita, Joba, and Snake plant. We isolated and characterized 113 endophytic bacteria, with varying resistance patterns observed against multiple antibiotics. Notably, 53 strains were multidrug-resistant (MDR), with 14 exhibiting extensive drug resistance (XDR). Thankuni-associated bacteria displayed 44% MDR and 11% XDR, while Neem-associated bacteria showed higher resistance (60% MDR, 13% XDR). Aparajita-associated bacteria had lower resistance (22% MDR, 6% XDR), whereas Joba-associated bacteria exhibited substantial resistance (54% MDR, 14% XDR). Snake plant-associated bacteria showed 7% MDR and 4% XDR. Genus-specific distribution revealed Bacillus (47%), Staphylococcus (21%), and Klebsiella (11%) as major contributors to MDR. Our findings highlight diverse drug resistance patterns among plant-associated bacteria and underscore the complexity of antibiotic resistance dynamics in diverse plant environments. Identification of XDR strains emphasizes the severity of the antibiotic resistance problem, warranting further investigation into contributing factors. 展开更多
关键词 Antibiotic Resistance Endophytic bacteria Medicinal Plants Drug Resistance
下载PDF
Bird species(Charadriiformes)does not impact endosymbiotic bacteria(Gammaproteobacteria)of their ectoparasites(Insecta:Phthiraptera:Ischnocera)
13
作者 Alexandra A.Grossi Min Zhang +1 位作者 Fasheng Zou Daniel R.Gustafsson 《Avian Research》 SCIE CSCD 2024年第4期496-502,共7页
Endosymbiotic bacteria of insects can facilitate host expansion into novel niches by providing their host with a fitness benefit such as vitamins or amino acids that are otherwise lacking in their hosts’diet.This clo... Endosymbiotic bacteria of insects can facilitate host expansion into novel niches by providing their host with a fitness benefit such as vitamins or amino acids that are otherwise lacking in their hosts’diet.This close association can lead to cospeciation between insects and their symbionts;however,the symbionts’small genome size leaves it susceptible to genome derogation which can result in symbiont replacement.Here,we screen chewing lice infesting shorebirds and terns to see what endosymbiotic bacteria are present,and build a summary phylogeny that includes louse endosymbiont sequences from this study as well as those from other louse genera,insects and bacteria strains from GenBank.We found a Sodalis-allied endosymbiont in Carduiceps,Lunaceps,Quadraceps,and Saemundssonia,as well as symbionts belonging to the family Enterobacteriaceae in Lunaceps,and Quadraceps.No louse species were host to both endosymbionts;however,the birds Kentish Plover(Charadrius alexandrinus)and Greater Crested Tern(Thalasseus bergii)were host to two genera of lice,each of which was infested with a different group of endosymbionts.In the summary phylogeny the endosymbionts from shorebirds,and tern lice did not form a monophyletic group,and therefore likely acquired their bacterial endosymbionts multiple times. 展开更多
关键词 Carduiceps CHARADRIIFORMES Endosymbiotic bacteria PHTHIRAPTERA Phylogeny Quadraceps-complex Sodalis
下载PDF
Bacterial Protein Profiling——Comparison of Three Mass Spectrometry Methodologies
14
作者 JIANG Yan CHEN Yanlin +4 位作者 SONG Gaoyu CHEN Yanyan BAI Jing ZHU Yingdi LI Juan 《高等学校化学学报》 SCIE EI CAS CSCD 北大核心 2024年第11期158-173,共16页
Profiling the protein composition of bacteria is essential for understanding their biology,physiology and interaction with environment.Mass spectrometry has become a pivotal tool for protein analysis,facilitating the ... Profiling the protein composition of bacteria is essential for understanding their biology,physiology and interaction with environment.Mass spectrometry has become a pivotal tool for protein analysis,facilitating the examination of expression levels,molecular masses and structural modifications.In this study,we compared the performance of three widely-used mass spectrometry methods,i.e.,matrix-assisted laser desorption/ionization(MALDI)protein fingerprinting,top-down proteomics and bottom-up proteomics,in the profiling of bacterial protein composition.It was revealed that bottom-up proteomics provided the highest protein coverage and exhibited the greatest protein profile overlap between bacterial species.In contrast,MALDI protein fingerprinting demonstrated superior detection reproducibility and effectiveness in distinguishing between bacterial species.Although top-down proteomics identified fewer proteins than bottom-up approach,it complemented MALDI fingerprinting in the discovery of bacterial protein markers,both favoring abundant,stable,and hydrophilic bacterial ribosomal proteins.This study represents the most systematic and comprehensive comparison of mass spectrometry-based protein profiling methodologies to date.It provides valuable guidelines for the selection of appropriate profiling strategies for specific analytical purposes.This will facilitate studies across various fields,including infection diagnosis,antimicrobial resistance detection and pharmaceutical target discovery. 展开更多
关键词 bacteria Protein profiling Mass spectrometry
下载PDF
Nanomotion of bacteria to determine metabolic profile
15
作者 S.N.Pleskova E.V.Lazarenko +4 位作者 N.A.Bezrukov R.N.Kriukov A.V.Boryakov M.E.Dokukin S.I.Surodin 《Nanotechnology and Precision Engineering》 EI CAS CSCD 2024年第1期1-9,共9页
In addition to their visible motion such as swimming(e.g.,with the help offlagella),bacteria can also exhibit nanomotion that is detectable only with highly sensitive instruments,and this study shows that it is possibl... In addition to their visible motion such as swimming(e.g.,with the help offlagella),bacteria can also exhibit nanomotion that is detectable only with highly sensitive instruments,and this study shows that it is possible to detect bacterial nanomotion using an AFM detection system.The results show that the nanomotion characteristics depend on the bacterial strain,and that nanomotion can be used to sense the metabolic activity of bacteria because the oscillations are sensitive to the food preferences of the bacteria and the type of surrounding medium. 展开更多
关键词 Nanomotion bacteria CANTILEVER OSCILLATION Atomic force microscopy METABOLISM
下载PDF
Isolation,identification,and evaluation of intestinal bacteria in Macrobrachium rosenbergii
16
作者 Xiuxin ZHAO Jinping LUO +7 位作者 Peimin LIU Hao HUANG Zhenheng CHENG Xin PENG Qiongying TANG Guoliang YANG Shaokui YI Quanxin GAO 《Journal of Oceanology and Limnology》 SCIE CAS CSCD 2024年第5期1710-1721,共12页
Probiotics are live microbial food supplements that have been shown to have beneficial effects on animal health.Endogenous probiotic bacteria have long been used for their proposed health promoting properties and have... Probiotics are live microbial food supplements that have been shown to have beneficial effects on animal health.Endogenous probiotic bacteria have long been used for their proposed health promoting properties and have become a hot research topic in growth improvement in aquaculture.The endogenous probiotic bacteria from intestines of Macrobrachium rosenbergii(giant river prawn)was explored for their probiotic potential,from which 367 bacterial strains were isolated from the intestine of M.rosenbergii.After 16 S rDNA sequence analysis,234 isolates were identified as Lactococcus garvieae,which accounted for 63.76%of the total number of culturable intestinal bacteria,suggesting that this bacterium was the main component of the microbiota.Furthermore,to reveal the probiotic properties of L.garvieae,this isolated bacterial strain was characterized morphologically,physiologically,and biochemically.Its enzyme production capacity,bacteriostatic activity,and resistance to acid,high temperature,and pH,were assessed.In vitro experiments showed that the L.garvieae(No.C 6 a 2)had a fast growth rate and entered the logarithmic phase rapidly.Besides,it had characteristics of acid-production and resistance,enzyme-producing capacity,and strong antibacterial activity against pathogenic Staphylococc us aureus,Aeromonas hydrophila,and Aeromonas veronii.However,it lacked the ability to tolerate high temperature.Our results provide novel data to deepen our understanding of the intestinal bacteria structure of M.rosenbergii and valuable information for probiotic screening and the application for M.rosenbergii. 展开更多
关键词 Macrobrachium rosenbergii intestinal bacteria probiotic Lactococcus garvieae
下载PDF
Integrated Effects of Phosphate Rock and Chemical Fertilizers on the Dynamics of Soil Bacterial in Acidic Rice Paddy Soils of Man (Ivory Coast)
17
作者 Affi Jeanne Bongoua-Devisme Sainte Adélaïde Ahya Edith Kouakou +1 位作者 Konan-Kan Hippolyte Kouadio Franck Michaël Lemonou Bahan 《Advances in Microbiology》 CAS 2024年第10期513-531,共19页
In agricultural soils, phosphorus is often limited, leading farmers to employ artificial supplementation through both inorganic and organic fertilization methods due to its restricted availability. Soil fertilization ... In agricultural soils, phosphorus is often limited, leading farmers to employ artificial supplementation through both inorganic and organic fertilization methods due to its restricted availability. Soil fertilization has the potential to augment both the abundance and diversity of bacterial communities. Our study aimed to assess the effects of phosphate amendments, derived from natural phosphate rock, and chemical fertilizers (TSP, NPK), on the density and diversity of bacterial communities within the study plots. We developed and applied eight phosphate amendments during the initial cultivation cycle. Soil samples were collected post 1st and 2nd cultivation cycles, and the quantification of both total and cultivable phosphate-solubilizing bacteria (PSB) was conducted. Additionally, we analyzed bacterial community structure, α-diversity (Shannon Diversity Index, Evenness Index, Chao1 Index). The combination of natural phosphate rock (PR) and chemical fertilizers (TSP, NPK) significantly increased (p 7 bacteria/g dry soil) and phosphate-solubilizing bacteria (0.01 to 6.8 × 107 PSB/g dry soil) in comparison to unamended control soils. The diversity of bacterial phyla (Firmicutes, Actinobacteria, Proteobacteria, Halobacterota, Chloroflexia) observed under each treatment remained consistent regardless of the nature of the phosphate amendment applied. However, changes in the abundance of the bacterial phyla populations were observed as a function of the nature of the phosphate amendment or chemical fertilizer. It appears that the addition of excessive natural phosphate rock does not alter the number and the diversity of soil microorganisms population despite successive cultivation cycles. However, the addition of excessive chemical fertilizer reduces soil microorganisms density and structure after the 2nd cultivation cycle. 展开更多
关键词 Phosphate Amendments Phosphate Solubilizing bacteria P-Cycle Genes Chemical Fertilizer
下载PDF
Synthesis of Silver Nanoparticles from Honeybees and Its Antibacterial Potential
18
作者 Akamu J. Ewunkem Niore’s Johnson +3 位作者 A’lyiha F. Beard Ilunga Tshimanga Brittany Justice Jeffery Meixner 《Open Journal of Medical Microbiology》 2024年第1期77-92,共16页
Honeybees (Apis mellifera) are important pollinators of flowering plants and agricultural crops contributing annually to billions of dollars in revenues to crop production. Honeybees have an average lifespan between 8... Honeybees (Apis mellifera) are important pollinators of flowering plants and agricultural crops contributing annually to billions of dollars in revenues to crop production. Honeybees have an average lifespan between 8 weeks to 5 years. Dead honeybees are abundantly available in beehives and can be utilized as an alternative source to synthesize nanoparticles. In recent years, biologically synthesized nanoparticles have been preferred over their chemical counterparts. However, honeybee-based-green synthesis of nanoparticles has not been explored yet. Herein, we report the biosynthesis of silver nanoparticles from honeybees and its antibacterial activity. The synthesis of silver nanoparticles was monitored visually through a gradual change in color. Furthermore, the biosynthesized nanoparticles were confirmed and characterized by UV-visible spectroscopy. Scanning Electron Microscope was utilized to analyze the average size and morphologies of the biosynthesized nanoparticles. Subsequently, the antibacterial potential of the biosynthesized silver nanoparticles was tested against selected Gram-positive and Gram-negative bacterial strains. It was found that a distinct color change from yellow to brown in the reaction solution suggested the formation of silver nanoparticles. The biosynthesized nanoparticles exhibited absorption maxima at 430 nm. The SEM analysis confirmed the spherical and cuboidal shape of the biosynthesized silver nanoparticles with a size range between 10 - 40 nm. Furthermore, the biosynthesized silver nanoparticles exhibited strong antimicrobial potential against tested Gram-positive and Gram-negative bacteria strains by aggregating on the cell surface. This study showcases the biomedical and agricultural applications of biosynthesized silver nanoparticles from honeybee wings. . 展开更多
关键词 HONEYBEE bacteria Green Synthesis Nanoparticles ANTIMICROBIAL
下载PDF
Soybean(Glycine max)rhizosphere organic phosphorus recycling relies on acid phosphatase activity and specific phosphorusmineralizing-related bacteria in phosphate deficient acidic soils
19
作者 Qianqian Chen Qian Zhao +9 位作者 Baoxing Xie Xing Lu Qi Guo Guoxuan Liu Ming Zhou Jihui Tian Weiguo Lu Kang Chen Jiang Tian Cuiyue Liang 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2024年第5期1685-1702,共18页
Bacteria play critical roles in regulating soil phosphorus(P) cycling. The effects of interactions between crops and soil P-availability on bacterial communities and the feedback regulation of soil P cycling by the ba... Bacteria play critical roles in regulating soil phosphorus(P) cycling. The effects of interactions between crops and soil P-availability on bacterial communities and the feedback regulation of soil P cycling by the bacterial community modifications are poorly understood. Here, six soybean(Glycine max) genotypes with differences in P efficiency were cultivated in acidic soils with long-term sufficient or deficient P-fertilizer treatments. The acid phosphatase(AcP) activities, organic-P concentrations and associated bacterial community compositions were determined in bulk and rhizosphere soils. The results showed that both soybean plant P content and the soil AcP activity were negatively correlated with soil organic-P concentration in P-deficient acidic soils. Soil P-availability affected the ɑ-diversity of bacteria in both bulk and rhizosphere soils. However, soybean had a stronger effect on the bacterial community composition, as reflected by the similar biomarker bacteria in the rhizosphere soils in both P-treatments. The relative abundance of biomarker bacteria Proteobacteria was strongly correlated with soil organic-P concentration and AcP activity in low-P treatments. Further high-throughput sequencing of the phoC gene revealed an obvious shift in Proteobacteria groups between bulk soils and rhizosphere soils, which was emphasized by the higher relative abundances of Cupriavidus and Klebsiella, and lower relative abundance of Xanthomonas in rhizosphere soils. Among them, Cupriavidus was the dominant phoC bacterial genus, and it was negatively correlated with the soil organic-P concentration. These findings suggest that soybean growth relies on organic-P mineralization in P-deficient acidic soils, which might be partially achieved by recruiting specific phoCharboring bacteria, such as Cupriavidus. 展开更多
关键词 organic phosphorus acid phosphatase SOYBEAN bacterial community phoC-harboring bacteria RHIZOSPHERE
下载PDF
Characterisation of the Bacteria and Archaea Community Associated with Wild Oysters, At Three Possible Restoration Sites in the North Sea
20
作者 Natacha M. S. Juste-Poinapen Yang Lu +2 位作者 Blanca Bolaños De Hoyos George C. Birch Camille Saurel 《Open Journal of Marine Science》 2024年第2期19-40,共22页
With 85% of the global oyster reefs destroyed, there is an urgent need for large scale restoration to benefit from the ecosystem services provided by biogenic oyster reefs and their associated biodiversity, including ... With 85% of the global oyster reefs destroyed, there is an urgent need for large scale restoration to benefit from the ecosystem services provided by biogenic oyster reefs and their associated biodiversity, including microorganisms that drive marine biogeochemical cycles. This experiment established a baseline for the monitoring of the bacterial and archaeal community associated with wild oysters, using samples from their immediate environment of the Voordelta, with cohabiting Crassostrea gigas and Ostrea edulis, Duikplaats with only C. gigas attached to rocks, and the Dansk Skaldyrcentre, with no onsite oysters. The microbial profiling was carried out through DNA analysis of samples collected from the surfaces of oyster shells and their substrate, the sediment and seawater. Following 16S rRNA amplicon sequencing and bioinformatics, alpha indices implied high species abundance and diversity in sediment but low abundance in seawater. As expected, Proteobacteria, Bacteroidetes, Firmicutes and Thaumarchaeota dominated the top 20 OTUs. In the Voordelta, OTUs related to Colwellia, Shewanella and Psychrobium differentiated the oysters collected from a reef with those attached to rocks. Duikplaats were distinct for sulfur-oxidizers Sulfurimonas and sulfate-reducers from the Sva 0081 sediment group. Archaea were found mainly in sediments and the oyster associated microbiome, with greater abundance at the reef site, consisting mostly of Thaumarchaeota from the family Nitrosopumilaceae. The oyster free site displayed archaea in sediments only, and algal bloom indicator microorganisms from the Rhodobacteraceae, Flavobacteriaceae family and genus [Polaribacter] huanghezhanensis, in addition to the ascidian symbiotic partner, Synechococcus. This study suggests site specific microbiome shifts, influenced by the presence of oysters and the type of substrate. 展开更多
关键词 Oyster Reefs MICROBIOME Marine bacteria Marine Archaea RESTORATION
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部