期刊文献+
共找到313篇文章
< 1 2 16 >
每页显示 20 50 100
Product Knowledge Representation and Integration Technology in Web-based Collaborative Design
1
作者 HAO Wentao,TIAN Ling,LUO Wei,TONG Bingshu (Department of Precision Instruments and Mechanology,Tsinghua University,Beijing 100084,China) 《武汉理工大学学报》 CAS CSCD 北大核心 2006年第S1期220-227,共8页
Because of the complexity of modern product design,the web-based collaborative product design aroused considerable attention of manufacturers in the last few years with the development of Internet technology. But it i... Because of the complexity of modern product design,the web-based collaborative product design aroused considerable attention of manufacturers in the last few years with the development of Internet technology. But it is still hardly achievable due to the difficulty to share product knowledge from different designers and systems. In this paper,we firstly create an ontology-based product model,which consists of PPR (Product,Process and Resource) concept models and PPR characteristic models,to describe product knowledge. Afterwards,how to represent the model in XML is discussed in detail. Then the mechanism of product knowledge collection and integration from different application systems based on interface agents is introduced. At last,a web-based open-architecture product knowledge integrating and sharing prototype system AD-HUB is developed. An example is also given and it shows that the theory discussed in this paper is efficient to represent and integrate product knowledge in web-based collaborative design processes. 展开更多
关键词 collaborative design KNOWLEDGE representation ONTOLOGY interface agent
下载PDF
Face Recognition Algorithm Fusing Monogenic Binary Coding and Collaborative Representation
2
作者 FU Yu-xian PENG Liang-yu 《Computer Aided Drafting,Design and Manufacturing》 2015年第2期14-18,共5页
Monogenic binary coding (MBC) have been known to be effective for local feature extraction, while sparse or collaborative representation based classification (CRC) has shown interesting results in robust face reco... Monogenic binary coding (MBC) have been known to be effective for local feature extraction, while sparse or collaborative representation based classification (CRC) has shown interesting results in robust face recognition. In this paper, a novel face recognition algorithm of fusing MBC and CRC named M-CRC is proposed; in which the dimensionality problem is resolved by projection matrix. The proposed algorithm is evaluated on benchmark face databases, including AR, PolyU-NIR and CAS-PEAL. The results indicate a significant increase in the performance when compared with state-of-the-art face recognition methods. 展开更多
关键词 face recognition monogenic binary coding collaborative representation
下载PDF
Integrating absolute distances in collaborative representation for robust image classification
3
作者 Shaoning Zeng Xiong Yang +1 位作者 Jianping Gou Jiajun Wen 《CAAI Transactions on Intelligence Technology》 2016年第2期189-196,共8页
Conventional sparse representation based classification (SRC) represents a test sample with the coefficient solved by each training sample in all classes. As a special version and improvement to SRC, collaborative r... Conventional sparse representation based classification (SRC) represents a test sample with the coefficient solved by each training sample in all classes. As a special version and improvement to SRC, collaborative representation based classification (CRC) obtains representation with the contribution from all training samples and produces more promising results on facial image classification. In the solutions of representation coefficients, CRC considers original value of contributions from all samples. However, one prevalent practice in such kind of distance-based methods is to consider only absolute value of the distance rather than both positive and negative values. In this paper, we propose an novel method to improve collaborative representation based classification, which integrates an absolute distance vector into the residuals solved by collaborative representation. And we named it AbsCRC. The key step in AbsCRC method is to use factors a and b as weight to combine CRC residuals rescrc with absolute distance vector disabs and generate a new dviaetion r = a·rescrc b.disabs, which is in turn used to perform classification. Because the two residuals have opposite effect in classification, the method uses a subtraction operation to perform fusion. We conducted extensive experiments to evaluate our method for image classification with different instantiations. The experimental results indicated that it produced a more promising result of classification on both facial and non-facial images than original CRC method. 展开更多
关键词 Sparse representation collaborative representation INTEGRATION Image classification Face recognition
下载PDF
A COLLABORATIVE SPECTRUM SENSING SCHEME USING FUZZY COMPREHENSIVE EVALUATION IN COGNITIVE RADIO 被引量:3
4
作者 Yang Wendong Ye Yuhuang +1 位作者 Cai Yueming Xu Youyun 《Journal of Electronics(China)》 2009年第3期326-331,共6页
Cognitive Radio(CR) is a promising technology to solve the challenging spectrum scarcity problem.However, to implement CR, spectrum sensing is the groundwork and the precondition.In this paper, a collaborative spectru... Cognitive Radio(CR) is a promising technology to solve the challenging spectrum scarcity problem.However, to implement CR, spectrum sensing is the groundwork and the precondition.In this paper, a collaborative spectrum sensing scheme using fuzzy comprehensive evaluation is proposed.The final sensing decision of the proposed scheme is based on the combination of distributed sensing results of different Secondary Users(SUs).To improve the reliability of the sensing decision, the combination procedure takes into account the credibility of each SU, which is evaluated using fuzzy comprehensive evaluation.The effect of the presence of malicious SUs and malfunctioning SUs on the performance of the proposed scheme is also investigated.The efficiency of the scheme is validated through analysis and simulation. 展开更多
关键词 Cognitive Radio (cr collaborative spectrum sensing Fuzzy comprehensive evaluation
下载PDF
Knowledge Graph Representation Reasoning for Recommendation System 被引量:2
5
作者 Tao Li Hao Li +4 位作者 Sheng Zhong Yan Kang Yachuan Zhang Rongjing Bu Yang Hu 《Journal of New Media》 2020年第1期21-30,共10页
In view of the low interpretability of existing collaborative filtering recommendation algorithms and the difficulty of extracting information from content-based recommendation algorithms,we propose an efficient KGRS ... In view of the low interpretability of existing collaborative filtering recommendation algorithms and the difficulty of extracting information from content-based recommendation algorithms,we propose an efficient KGRS model.KGRS first obtains reasoning paths of knowledge graph and embeds the entities of paths into vectors based on knowledge representation learning TransD algorithm,then uses LSTM and soft attention mechanism to capture the semantic of each path reasoning,then uses convolution operation and pooling operation to distinguish the importance of different paths reasoning.Finally,through the full connection layer and sigmoid function to get the prediction ratings,and the items are sorted according to the prediction ratings to get the user’s recommendation list.KGRS is tested on the movielens-100k dataset.Compared with the related representative algorithm,including the state-of-the-art interpretable recommendation models RKGE and RippleNet,the experimental results show that KGRS has good recommendation interpretation and higher recommendation accuracy. 展开更多
关键词 Knowledge graph collaborative filtering deep learning interpretable recommendation knowledge representation learning
下载PDF
Studying Design and Use of Healthcare Technologies in Interaction: The Social Learning Perspective in a Dutch Quality Improvement Collaborative Program
6
作者 Esther van Loon Nelly Oudshoorn Roland Bal 《Health》 2014年第15期1903-1918,共16页
Designing technologies is a process that relies on multiple interactions between design and use contexts. These interactions are essential to the development and establishment of technologies. This article seeks to un... Designing technologies is a process that relies on multiple interactions between design and use contexts. These interactions are essential to the development and establishment of technologies. This article seeks to understand the attempts of healthcare organisations to integrate use contexts into the design of healthcare technologies following insights of the theoretical approaches of social learning and user representations. We present a multiple case study of three healthcare technologies involved in improving elderly care practice. These cases were part of a Dutch quality improvement collaborative program, which urged that development of these technologies was not “just” development, but should occur in close collaboration with other parts of the collaborative program, which were more focused on implementation. These cases illustrate different ways to develop technologies in interaction with use contexts and users. Despite the infrastructure of the collaborative program, interactions were not without problems. We conclude by arguing that interactions between design and use are not naturally occurring phenomena, but must be actively organised in order to create effects. 展开更多
关键词 Quality Improvement collaborative PROGRAM SOCIAL Learning User representation Healthcare Technology LONG-TERM Healthcare
下载PDF
GNN-CRC: Discriminative Collaborative Representation-Based Classification via Gabor Wavelet Transformation and Nearest Neighbor
7
作者 ZHANG Yanghao ZENG Shaoning +1 位作者 ZENG Wei GOU Jianping 《Journal of Shanghai Jiaotong university(Science)》 EI 2018年第5期657-665,共9页
Collaborative representation-based classification(CRC) is a distance based method, and it obtains the original contributions from all samples to solve the sparse representation coefficient. We find out that it helps t... Collaborative representation-based classification(CRC) is a distance based method, and it obtains the original contributions from all samples to solve the sparse representation coefficient. We find out that it helps to enhance the discrimination in classification by integrating other distance based features and/or adding signal preprocessing to the original samples. In this paper, we propose an improved version of the CRC method which uses the Gabor wavelet transformation to preprocess the samples and also adapts the nearest neighbor(NN)features, and hence we call it GNN-CRC. Firstly, Gabor wavelet transformation is applied to minimize the effects from the background in face images and build Gabor features into the input data. Secondly, the distances solved by NN and CRC are fused together to obtain a more discriminative classification. Extensive experiments are conducted to evaluate the proposed method for face recognition with different instantiations. The experimental results illustrate that our method outperforms the naive CRC as well as some other state-of-the-art algorithms. 展开更多
关键词 face recognition collaborative representation GABOR wavelet transformation nearest NEIGHBOR (NN) image CLASSIFICATION
原文传递
基于镜像图的LRC和CRC偏差结合的人脸识别 被引量:2
8
作者 陈铭 周先春 周杰 《南京信息工程大学学报(自然科学版)》 CAS 2019年第3期340-345,共6页
为了提高人脸识别率及更好地显示人脸特征,本文提出了一种基于镜像图的LRC和CRC偏差结合的人脸识别方法.该方法首先生成一种镜像人脸,再通过融合原始人脸和镜像人脸形成新的混合训练样本,最后利用LRC和CRC偏差结合进行人脸识别.新方法... 为了提高人脸识别率及更好地显示人脸特征,本文提出了一种基于镜像图的LRC和CRC偏差结合的人脸识别方法.该方法首先生成一种镜像人脸,再通过融合原始人脸和镜像人脸形成新的混合训练样本,最后利用LRC和CRC偏差结合进行人脸识别.新方法增加了训练样本的数目,克服了由于光照和姿态等外部因素带来的影响.实验结果表明,镜像图与LRC和CRC偏差结合的人脸识别方法提高了人脸识别的准确性. 展开更多
关键词 人脸识别 镜像 协作表示分类算法 线性回归分类算法 偏差 稀疏表示
下载PDF
改进的Gabor-CRC人脸识别算法 被引量:2
9
作者 牟琦 汪堂洪 李占利 《计算机工程与设计》 北大核心 2016年第10期2769-2774,共6页
针对CRC_RLS对光照变化、表情变化、姿态偏转的人脸识别鲁棒性不高和Gabor-CRC算法对有伪装的人脸识别识别率下降的问题,提出一种基于分块Gabor特征和加权协同表示的人脸识别算法(BG-WCRC)。对图像进行分块,分别对每块提取Gabor特征、... 针对CRC_RLS对光照变化、表情变化、姿态偏转的人脸识别鲁棒性不高和Gabor-CRC算法对有伪装的人脸识别识别率下降的问题,提出一种基于分块Gabor特征和加权协同表示的人脸识别算法(BG-WCRC)。对图像进行分块,分别对每块提取Gabor特征、下采样和PCA降维构成子块Gabor特征字典,利用CRC_RLS方法计算每块的类别,对各块的类别进行加权投票得到图像的最终类别。在AR、Extended Yale B和ORL人脸库上进行实验,实验结果表明,该算法具有较强的鲁棒性。 展开更多
关键词 人脸识别 GABOR特征 协同表示 图像分块 加权投票
下载PDF
半监督条件下的CRC跳频电台指纹特征识别 被引量:7
10
作者 眭萍 郭英 +1 位作者 张坤峰 李红光 《系统工程与电子技术》 EI CSCD 北大核心 2019年第1期187-193,共7页
针对跳频电台指纹特征差异细微、对噪声影响敏感,同时非合作条件下跳频信号的识别训练标签数据不足问题,提出了一种基于合作表征分类器(collaborative representation classifier,CRC)的半监督条件下跳频电台指纹特征识别算法。以跳频... 针对跳频电台指纹特征差异细微、对噪声影响敏感,同时非合作条件下跳频信号的识别训练标签数据不足问题,提出了一种基于合作表征分类器(collaborative representation classifier,CRC)的半监督条件下跳频电台指纹特征识别算法。以跳频电台开机瞬态信号的包络特性作为电台个体的指纹特征,利用对噪声"不敏感"的高阶累积量估计来抑制噪声;通过构造半监督条件下的CRC实现对未标定训练数据的有效利用。实验表明,与传统有监督训练相比,该方法在抑制噪声的同时,能够充分利用未标定训练数据特征,对目标特征具有更高的识别率。 展开更多
关键词 跳频信号 指纹特征 合作表征分类器 半监督 特征识别
下载PDF
多层AR-LBP与WLD特征融合的SA-CRC人脸识别 被引量:1
11
作者 叶枫 叶学义 +1 位作者 罗宵晗 陈泽 《计算机工程与应用》 CSCD 北大核心 2019年第14期134-141,共8页
针对非对称局部二值模式(AR-LBP)提取的人脸特征有限,以及协同表示分类(CRC)人脸存在的类间干扰,提出以多层AR-LBP特征及联合韦伯局部描述子(WLD)特征进行补充,并以增加CRC中稀疏性来降低类间干扰。提取人脸图像的多层AR-LBP特征并级联... 针对非对称局部二值模式(AR-LBP)提取的人脸特征有限,以及协同表示分类(CRC)人脸存在的类间干扰,提出以多层AR-LBP特征及联合韦伯局部描述子(WLD)特征进行补充,并以增加CRC中稀疏性来降低类间干扰。提取人脸图像的多层AR-LBP特征并级联,与从原图像提取的WLD特征级联得到多层AR-LBP与WLD融合特征,采用稀疏增强的协同表示分类(SA-CRC)完成人脸分类。在ORL、Yale和GT公开人脸库上,提出的多层AR-LBP与WLD特征融合算法与AR-LBP特征提取算法、WLD特征提取算法以及多层LBP与HOG特征融合算法相比,识别正确率提高了0.7%~42.6%;当利用SA-CRC取代CRC后,识别正确率进一步得到提高。 展开更多
关键词 非对称局部二值模式(AR-LBP) 韦伯局部描述子(WLD) 协同表示分类(crC) 稀疏增强的协同表示分类(SA-crC) 特征提取
下载PDF
Weighted average integration of sparse representation and collaborative representation for robust face recognition 被引量:1
12
作者 Shaoning Zeng Yang Xiong 《Computational Visual Media》 2016年第4期357-365,共9页
Sparse representation is a significant method to perform image classification for face recognition. Sparsity of the image representation is the key factor for robust image classification.As an improvement to sparse re... Sparse representation is a significant method to perform image classification for face recognition. Sparsity of the image representation is the key factor for robust image classification.As an improvement to sparse representation-based classification, collaborative representation is a newer method for robust image classification. Training samples of all classes collaboratively contribute together to represent one single test sample. The ways of representing a test sample in sparse representation and collaborative representation are very different, so we propose a novel method to integrate both sparse and collaborative representations to provide improved results for robust face recognition.The method first computes a weighted average of the representation coefficients obtained from two conventional algorithms, and then uses it for classification. Experiments on several benchmark face databases show that our algorithm outperforms both sparse and collaborative representation-based classification algorithms, providing at least a 10%improvement in recognition accuracy. 展开更多
关键词 sparse representation collaborative representation image classification face recognition
原文传递
A new discriminative sparse parameter classifier with iterative removal for face recognition
13
作者 TANG De-yan ZHOU Si-wang +2 位作者 LUO Meng-ru CHEN Hao-wen TANG Hui 《Journal of Central South University》 SCIE EI CAS CSCD 2022年第4期1226-1238,共13页
Face recognition has been widely used and developed rapidly in recent years.The methods based on sparse representation have made great breakthroughs,and collaborative representation-based classification(CRC)is the typ... Face recognition has been widely used and developed rapidly in recent years.The methods based on sparse representation have made great breakthroughs,and collaborative representation-based classification(CRC)is the typical representative.However,CRC cannot distinguish similar samples well,leading to a wrong classification easily.As an improved method based on CRC,the two-phase test sample sparse representation(TPTSSR)removes the samples that make little contribution to the representation of the testing sample.Nevertheless,only one removal is not sufficient,since some useless samples may still be retained,along with some useful samples maybe being removed randomly.In this work,a novel classifier,called discriminative sparse parameter(DSP)classifier with iterative removal,is proposed for face recognition.The proposed DSP classifier utilizes sparse parameter to measure the representation ability of training samples straight-forward.Moreover,to avoid some useful samples being removed randomly with only one removal,DSP classifier removes most uncorrelated samples gradually with iterations.Extensive experiments on different typical poses,expressions and noisy face datasets are conducted to assess the performance of the proposed DSP classifier.The experimental results demonstrate that DSP classifier achieves a better recognition rate than the well-known SRC,CRC,RRC,RCR,SRMVS,RFSR and TPTSSR classifiers for face recognition in various situations. 展开更多
关键词 collaborative representation-based classification discriminative sparse parameter classifier face recognition iterative removal sparse representation two-phase test sample sparse representation
下载PDF
纳米氧化锆-FA复合材料处理含Cr(Ⅲ)废水试验研究
14
作者 张颖 韩润泽 +1 位作者 徐昆 梅才华 《湖南城市学院学报(自然科学版)》 CAS 2023年第2期73-78,共6页
为了高效解决Cr(Ⅲ)废水引发的环境危害,采用价格低廉、比表面积大的粉煤灰为载体制备粉煤灰/纳米氧化锆(FA-nZrO_(2))复合材料处理废水,并进行了动态吸附试验及再生试验研究;同时,探讨了动态柱中吸附剂种类、反应层高度及进水水力负荷... 为了高效解决Cr(Ⅲ)废水引发的环境危害,采用价格低廉、比表面积大的粉煤灰为载体制备粉煤灰/纳米氧化锆(FA-nZrO_(2))复合材料处理废水,并进行了动态吸附试验及再生试验研究;同时,探讨了动态柱中吸附剂种类、反应层高度及进水水力负荷对Cr(Ⅲ)去除效果的影响,分析了其吸附机理并进行了动力学方程拟合.研究结果表明:FA-nZrO_(2)吸附剂吸附效果优于FA;用FA-nZrO_(2)作吸附剂时,在反应层高度为15 cm、进水水力负荷为2.935 m3·(m2·d)−1时,对Cr(Ⅲ)吸附效果最好;Yoon-Nelson模型能够更好地拟合FA-nZrO_(2)吸附Cr(Ⅲ)的过程;FA-nZrO_(2)对Cr(Ⅲ)的去除效果包括物理和化学的协同作用;利用0.01 mg/L纳米二氧化锆明胶,以0.2 mol/L NaCl为洗脱液,对FA-nZrO_(2)进行3次吸附-脱附试验后,仍能保持较好的吸附能力. 展开更多
关键词 FA-nZrO_(2) cr(Ⅲ) 动态试验 微观表征
下载PDF
多机协同自主任务规划系统研究综述 被引量:1
15
作者 柴蓉 杨泞渝 +2 位作者 段晓芳 艾新雨 陈前斌 《重庆邮电大学学报(自然科学版)》 CSCD 北大核心 2024年第4期647-660,共14页
针对多机协同自主任务规划显著提升无人机任务感知效能、提高任务执行能力的现状,对其关键技术进行阐述,主要包括知识表示、通感一体化、任务调度及航迹规划等技术。针对知识表示技术,阐述基于任务环境上下文感知的知识库构建方法,进而... 针对多机协同自主任务规划显著提升无人机任务感知效能、提高任务执行能力的现状,对其关键技术进行阐述,主要包括知识表示、通感一体化、任务调度及航迹规划等技术。针对知识表示技术,阐述基于任务环境上下文感知的知识库构建方法,进而对多域融合知识图谱构建、动态知识图谱更新与共享方法进行分析总结;针对通感一体化技术,分析了环境适变、灵活可扩的多机协同通感一体化架构,进而揭示多机协同通感一体化理论能限,阐述面向任务差异性需求的资源共享方法;针对任务调度及航迹规划技术,阐述资源适配的多机协同自主任务调度方案,并对基于动力学模型的航迹控制策略及不完美环境下的鲁棒控制机制进行分析总结。 展开更多
关键词 无人机 知识表示 协同任务感知 通感一体化 任务规划
下载PDF
多任务联合学习的图卷积神经网络推荐 被引量:1
16
作者 王永贵 邹赫宇 《计算机工程与应用》 CSCD 北大核心 2024年第4期306-314,共9页
基于图神经网络的协同过滤推荐可以更有效地挖掘用户项目之间的交互信息,但其性能依然受到数据稀疏和表征学习质量不高问题的影响,因此提出一种多任务联合学习的图卷积神经网络推荐(multi-task joint learning for graph convolutional ... 基于图神经网络的协同过滤推荐可以更有效地挖掘用户项目之间的交互信息,但其性能依然受到数据稀疏和表征学习质量不高问题的影响,因此提出一种多任务联合学习的图卷积神经网络推荐(multi-task joint learning for graph convolutional neural network recommendations,MTJL-GCN)模型。利用图神经网络在用户-项目交互图上所聚集到的同质结构信息与初始嵌入信息形成结构邻居关系,设计节点邻居关系的对比学习辅助任务来缓解数据稀疏问题;向节点的原始表征添加随机的统一噪声进行表征级数据增强,构建节点表征关系的对比学习辅助任务,并提出直接优化对齐性和均匀性两个属性的学习目标来提高表征学习质量;将图协同过滤推荐任务与对比学习辅助任务和直接优化学习目标进行联合训练,从而提升推荐性能。在Amazon-books和Yelp2018两个公开数据集上进行实验,该模型在Recall@k和NDCG@k两个推荐性能指标上的表现均优于基线模型,证明了MTJL-GCN模型的有效性。 展开更多
关键词 推荐算法 图卷积神经网络 对比学习 表征学习 数据稀疏 协同过滤
下载PDF
任务协作表示增强的要素及关系联合抽取模型
17
作者 刘小明 王杭 +2 位作者 杨关 刘杰 曹梦远 《电子学报》 EI CAS CSCD 北大核心 2024年第6期1955-1962,共8页
对文本中诸如实体与关系、事件及其论元等要素及其特定关系的联合抽取是自然语言处理的一项关键任务.现有研究大多采用统一编码或参数共享的方式隐性处理任务间的交互,缺乏对任务之间特定关系的显式建模,从而限制模型充分利用任务间的... 对文本中诸如实体与关系、事件及其论元等要素及其特定关系的联合抽取是自然语言处理的一项关键任务.现有研究大多采用统一编码或参数共享的方式隐性处理任务间的交互,缺乏对任务之间特定关系的显式建模,从而限制模型充分利用任务间的关联信息并影响任务间的有效协同.为此,提出了一种基于任务协作表示增强的要素及关系联合抽取模型(Task-Collaboration Representation Enhanced model for joint extraction of elements and relationships,TCRE).该模型旨在从多个阶段处理任务间的特定关系,帮助子任务进行更细致的调节和优化,促进整体性能的提升.在三个关系抽取和一个事件抽取数据集上进行实验,TCRE在实体识别和关系提取任务上平均性能分别提高0.57%和0.77%,在触发词识别和论元角色分类任务上分别提高0.7%和1.4%.此外,TCRE还显示出在缓解“跷跷板现象”方面的作用. 展开更多
关键词 关系表示 联合抽取 任务协作 多任务学习 跷跷板现象
下载PDF
MCM-ICE:联合独立编码和协同编码的多模态分类模型
18
作者 郭锐锋 魏靖烜 +1 位作者 于碧辉 孙林壮 《小型微型计算机系统》 CSCD 北大核心 2024年第9期2080-2086,共7页
多模态数据处理是一个重要的研究领域,它可以通过结合文本、图像等多种信息来提高模型性能.然而,由于不同模态之间的异构性以及信息融合的挑战,设计有效的多模态分类模型仍然是一个具有挑战性的问题.本文提出了一种新的多模态分类模型—... 多模态数据处理是一个重要的研究领域,它可以通过结合文本、图像等多种信息来提高模型性能.然而,由于不同模态之间的异构性以及信息融合的挑战,设计有效的多模态分类模型仍然是一个具有挑战性的问题.本文提出了一种新的多模态分类模型——MCM-ICE,它通过联合独立编码和协同编码策略来解决特征表示和特征融合的挑战.MCM-ICE在Fashion-Gen和Hateful Memes Challenge两个数据集上进行了实验,结果表明该模型在这两项任务中均优于现有的最先进方法.本文还探究了协同编码模块Transformer输出层的不同向量选取对结果的影响,结果表明选取[CLS]向量和去除[CLS]的向量的平均池化向量可以获得最佳结果.消融研究和探索性分析支持了MCM-ICE模型在处理多模态分类任务方面的有效性. 展开更多
关键词 多模态数据处理 特征表示 特征融合 协同编码
下载PDF
基于样本内外协同表示和自适应融合的多模态学习方法 被引量:1
19
作者 黄学坚 马廷淮 王根生 《计算机研究与发展》 EI CSCD 北大核心 2024年第5期1310-1324,共15页
多模态机器学习是一种新的人工智能范式,结合各种模态和智能处理算法以实现更高的性能.多模态表示和多模态融合是多模态机器学习的2个关键任务.目前,多模态表示方法很少考虑样本间的协同,导致特征表示缺乏鲁棒性,大部分多模态特征融合... 多模态机器学习是一种新的人工智能范式,结合各种模态和智能处理算法以实现更高的性能.多模态表示和多模态融合是多模态机器学习的2个关键任务.目前,多模态表示方法很少考虑样本间的协同,导致特征表示缺乏鲁棒性,大部分多模态特征融合方法对噪声数据敏感.因此,在多模态表示方面,为了充分学习模态内和模态间的交互,提升特征表示的鲁棒性,提出一种基于样本内和样本间多模态协同的表示方法.首先,分别基于预训练的BERT,Wav2vec 2.0,Faster R-CNN提取文本特征、语音特征和视觉特征;其次,针对多模态数据的互补性和一致性,构建模态特定和模态共用2类编码器,分别学习模态特有和共享2种特征表示;然后,利用中心矩差异和正交性构建样本内协同损失函数,采用对比学习构建样本间协同损失函数;最后,基于样本内协同误差、样本间协同误差和样本重构误差设计表示学习函数.在多模态融合方面,针对每种模态可能在不同时刻表现出不同作用类型和不同级别的噪声,设计一种基于注意力机制和门控神经网络的自适应的多模态特征融合方法.在多模态意图识别数据集MIntRec和情感数据集CMU-MOSI,CMU-MOSEI上的实验结果表明,该多模态学习方法在多个评价指标上优于基线方法. 展开更多
关键词 多模态表示 多模态融合 多模态学习 协同表示 自适应融合
下载PDF
基于保真度加权判别协同竞争表示的鲁棒图像分类
20
作者 邓永强 孙为军 《计算机应用与软件》 北大核心 2024年第6期263-272,共10页
为了深度挖掘类别之间的信息,提升方法鲁棒性和准确度,提出一种基于加权判别式协同竞争表示的鲁棒图像分类方法。该文将所有类之间的判别和竞争协作表示集成到统一模型中;在模型中引入两个判别约束和加权类别表示系数的约束,进一步提升... 为了深度挖掘类别之间的信息,提升方法鲁棒性和准确度,提出一种基于加权判别式协同竞争表示的鲁棒图像分类方法。该文将所有类之间的判别和竞争协作表示集成到统一模型中;在模型中引入两个判别约束和加权类别表示系数的约束,进一步提升类别对表征的贡献率;引入一种具有保真度的鲁棒算法,有效提升对噪声的鲁棒性。对6组图像数据集进行实验验证,结果证明提出的方法具有更高的分类精度与鲁棒性。 展开更多
关键词 图像分类 鲁棒性 协同表示 判别约束
下载PDF
上一页 1 2 16 下一页 到第
使用帮助 返回顶部