To improve operation efficiency,an interlayered thin-film composite forward osmosis(iTFC-FO)membrane was designed by introducing an ultrathin and porous interlayer based on aluminum tetra-(4-carboxyphenyl)porphyrin(a ...To improve operation efficiency,an interlayered thin-film composite forward osmosis(iTFC-FO)membrane was designed by introducing an ultrathin and porous interlayer based on aluminum tetra-(4-carboxyphenyl)porphyrin(a stable metal-organic framework nanosheet,Al-MOF).Surface characterization results revealed that Al-MoF spread evenly in the macro-porous substrate,and provided a flat and smooth reaction interface with moderate hydrophilicity and uniform small aperture.The resultant polyamide(PA)layer had a thin base(without intrusion into substrate)and crumpled surface(with abundant leaves).The leaves size and cross-linking degree of PA layer firstly increased and then decreased with the Al-MOF loading.Compared to the original membrane,the iTFC-FO showed an enhanced water permeability and a reduced reverse sodium flux in both modes of active layer facing feed solution(ALFS)and active layer facing draw solution(AL-DS).To be specific,the specific reverse sodium flux(reverse sodium flux/pure water flux)decreased from 0.27 g/L to 0.04 g/L in the AL-FS mode,while from 1.36 g/L to 0.23 g/L in the AL-DS mode with 2 mol/L NaCl as DS.Moreover,the iTFC-FO maintained high stability and high permeability under high-salinity and contaminated environment.This study offers a new possibility for the rational fabrication of high-performance TFC-FO membranes.展开更多
基金supported by the National Natural Science Foundation of China(Nos.52100089 and 51978312)the Program to Cultivate Middle-aged and Young Science Leaders of Colleges and Universities of Jiangsu Province and Youth Fund of Basic Research Program of Jiangnan University(No.JUSRP121058).
文摘To improve operation efficiency,an interlayered thin-film composite forward osmosis(iTFC-FO)membrane was designed by introducing an ultrathin and porous interlayer based on aluminum tetra-(4-carboxyphenyl)porphyrin(a stable metal-organic framework nanosheet,Al-MOF).Surface characterization results revealed that Al-MoF spread evenly in the macro-porous substrate,and provided a flat and smooth reaction interface with moderate hydrophilicity and uniform small aperture.The resultant polyamide(PA)layer had a thin base(without intrusion into substrate)and crumpled surface(with abundant leaves).The leaves size and cross-linking degree of PA layer firstly increased and then decreased with the Al-MOF loading.Compared to the original membrane,the iTFC-FO showed an enhanced water permeability and a reduced reverse sodium flux in both modes of active layer facing feed solution(ALFS)and active layer facing draw solution(AL-DS).To be specific,the specific reverse sodium flux(reverse sodium flux/pure water flux)decreased from 0.27 g/L to 0.04 g/L in the AL-FS mode,while from 1.36 g/L to 0.23 g/L in the AL-DS mode with 2 mol/L NaCl as DS.Moreover,the iTFC-FO maintained high stability and high permeability under high-salinity and contaminated environment.This study offers a new possibility for the rational fabrication of high-performance TFC-FO membranes.