The present paper investigates the collapse process of a pipe-framed greenhouse under static wind loading based on a non-linear finite element analysis.The purpose is to establish a more reasonable wind resistant desi...The present paper investigates the collapse process of a pipe-framed greenhouse under static wind loading based on a non-linear finite element analysis.The purpose is to establish a more reasonable wind resistant design method for such structures.The structures are so flexible that the fluid-structure interaction(FSI)is considered in the analysis.In practice,iterative analyses of the structure’s response and the wind pressure distribution on the deformed structure are made.The wind direction is normal to the ridge.Computational fluid dynamics(CFD)analysis with a RANS turbulence model is used for evaluating the time-averaged wind pressure coefficient distribution on the structure.Both the geometric and the material non-linearity are considered in the structural analysis.The collapse behavior obtained is consistent with the practical one often observed in damage investigations.Based on the results,discussion is made of the validity of the current design guideline commonly used in Japan.The same analysis is carried out for various reinforced models.The effect of each reinforcement method on the improvement of wind resistance of the structure is investigated on the basis of the allowable stress and deformation limits specified in the current design guideline.展开更多
On the basis of the Local Equilibrium Model (LEM), fine particles with large Richardson-Zaki exponent n show, under certain conditions during bed expansion and collapse, different dynamic behavior from particles wit...On the basis of the Local Equilibrium Model (LEM), fine particles with large Richardson-Zaki exponent n show, under certain conditions during bed expansion and collapse, different dynamic behavior from particles with small n. For an expansion process there may be a concentration discontinuity propagating upward from the distributor, and, on the contrary, for a collapse process there may be a progressively broadening and upward-propagating continuous transition zone instead of discontinuity. The predictions of the bed height variation and the discontinuity trace have been validated experimentally.展开更多
基金supported by the Steel Structure Research and Education Promotion Project of the Japan Iron and Steel Federation in FY2016.
文摘The present paper investigates the collapse process of a pipe-framed greenhouse under static wind loading based on a non-linear finite element analysis.The purpose is to establish a more reasonable wind resistant design method for such structures.The structures are so flexible that the fluid-structure interaction(FSI)is considered in the analysis.In practice,iterative analyses of the structure’s response and the wind pressure distribution on the deformed structure are made.The wind direction is normal to the ridge.Computational fluid dynamics(CFD)analysis with a RANS turbulence model is used for evaluating the time-averaged wind pressure coefficient distribution on the structure.Both the geometric and the material non-linearity are considered in the structural analysis.The collapse behavior obtained is consistent with the practical one often observed in damage investigations.Based on the results,discussion is made of the validity of the current design guideline commonly used in Japan.The same analysis is carried out for various reinforced models.The effect of each reinforcement method on the improvement of wind resistance of the structure is investigated on the basis of the allowable stress and deformation limits specified in the current design guideline.
基金the National Natural Science Foundation of China (NSFC No. 20376083) Key Laboratory of Multiphase Reaction, Institute of Process Engineering, Chinese Academy of Sciences.
文摘On the basis of the Local Equilibrium Model (LEM), fine particles with large Richardson-Zaki exponent n show, under certain conditions during bed expansion and collapse, different dynamic behavior from particles with small n. For an expansion process there may be a concentration discontinuity propagating upward from the distributor, and, on the contrary, for a collapse process there may be a progressively broadening and upward-propagating continuous transition zone instead of discontinuity. The predictions of the bed height variation and the discontinuity trace have been validated experimentally.