[Objective] This study aimed to explore the biological characteristics of Col etotrichum gloeosporioides in pears. [Method] Twenty-five C. gloeosporioides strains were isolated and identified from the diseased samples...[Objective] This study aimed to explore the biological characteristics of Col etotrichum gloeosporioides in pears. [Method] Twenty-five C. gloeosporioides strains were isolated and identified from the diseased samples. Their pathogenicity was identified by inoculating the surface of punctured pears with fungal discs. The effects of different temperatures, pH values, carbon sources and nitrogen sources on the growth of C. gloeosporioides mycelia were explored by incubating fungal discs on the center of plates. [Result] Among the twenty-five C. gloeosporioides strains, three had strong pathogenicity, and eighteen had intermediate pathogenicity, and four strains had weak pathogenicity. Those highly-pathogenic strains had darker colonies, with dense mycelia, whereas those lowly-pathogenic ones had white colonies, with sparse mycelia. Those with fast-growing colonies showed strong pathogenicity, while those with slowly-growing colonies displayed weak pathogenicity. There was no relationship between conidia yield and pathogenicity. The optimum temperature for the growth of C. gloeosporioides mycelia was 25-30 ℃, and the optimum pH was 5.0-7.0. C. gloeosporioides could make use of various carbon sources (monosaccharide and disaccharide), inorganic and organic nitrogen sources, and the optimal carbon source and nitrogen source were sucrose and beef extract, respectively. [Conclusion] Our study benefits further understanding of C. gloeospori-oides and helps to control pear anthracnose more effectively.展开更多
The ascomycete fungus Colletotrichum gloeosporioides is a devastating plant pathogen with a wide host range and worldwide distribution. Carbendazim has been widely used to control anthracnose caused by the C. gloeospo...The ascomycete fungus Colletotrichum gloeosporioides is a devastating plant pathogen with a wide host range and worldwide distribution. Carbendazim has been widely used to control anthracnose caused by the C. gloeosporioides complex in China for more than 30 years and resistance to carbendazim has been reported in China. A total of 125 Colletotrichum isolates of strawberry and yam were collected from different geographical regions in Hubei Province, China. Approximately 52.8% of Colletotrichum spp. isolates showed resistance to carbendazim. The isolates tested in this study belong to four species, and the frequencies of resistant isolates differed across Colletotrichum species. Resistant isolates were found in C. siamense and C. fructicola. In contrast, all isolates of C. gloeosporioides and C. aenigma were sensitive to carbendazim. Highly carbendazim-resistant isolates harbored the E198A mutation in the β-tubulin 2 (TUB2) gene, whereas moderately carbendazim-resistant isolates harbored the F200Y mutation in the TUB2 gene. Carbendazim-sensitive Colletotrichum isolates in this study were not genetically similar enough to form a separate cluster from resistant isolates. The result of this study emphasizes the importance of knowing which Colletotrichum sp. is present, when strategies for disease control are made.展开更多
Anthracnose,caused by Colletotrichum truncatum and C.gloeosporioides,is amongst the most serious diseases of soybean in China.Picoxystrobin,a quinone outside inhibitor fungicide,is commonly used for the control of ant...Anthracnose,caused by Colletotrichum truncatum and C.gloeosporioides,is amongst the most serious diseases of soybean in China.Picoxystrobin,a quinone outside inhibitor fungicide,is commonly used for the control of anthracnose.Its resistance risk and mechanism in C.truncatum and C.gloeosporioides are unclear.In this study,the sensitivities of 128 C.truncatum and 121 C.gloeosporioides isolates to picoxystrobin were investigated,and unimodal distributions were observed with average EC_(50)values of 0.7740 and 1.1561μg mL^(-1),respectively.Eleven picoxystrobin-resistant mutants of C.truncatum and six mutants of C.gloeosporioides were acquired,with EC_(50)values varying from 5.40-152.96 and 13.53-28.30μg mL^(-1),respectively.Compared to the parental isolates,mutants showed similar or higher relative fitness in conidial production and germination,and pathogenicity.Collectively,the resistance risk of C.truncatum and C.gloeosporioides to picoxystrobin is moderate to high.There was positive cross-resistance between picoxystrobin and pyraclostrobin,but not between picoxystrobin and fluazinam,difenoconazole,or propiconazole.The G143S mutation in Cyt b protein was detected in seven high-resistant mutants of C.truncatum(RF>100),and G137R occurred in four moderate-resistant mutants(RF<_(50)).Contrastingly,there were no point mutations in Cyt b of any C.gloeosporioides mutants.Molecular docking confirmed that two mutations conferred different resistance levels to picoxystrobin.Under greenhouse trials,picoxystrobin did not control mutants with the G143S mutation,those bearing G137R or no point mutation were somewhat controlled,but at a lower level compared to wild-type isolates.These results showed that integrated management strategies should be implemented to preserve fungicide effectiveness.展开更多
A fungal pathogen, Colletotrichum gloeosporioides was isolated from a greenhouse-grown seedling of coffee senna (Cassia occidentalis) and evaluated as a mycoherbicide for that weed. Host range tests revealed that coff...A fungal pathogen, Colletotrichum gloeosporioides was isolated from a greenhouse-grown seedling of coffee senna (Cassia occidentalis) and evaluated as a mycoherbicide for that weed. Host range tests revealed that coffee senna, wild senna (C. marilandica), and sicklepod (C. obtusifolia) were also affected by this pathogen, but 35 other crop and weed species, representing 8 botanical families were not affected. The fungus sporulated prolifically on solid and liquid media with maximum spore germination and growth occurring at 20°C - 30°C. Optimal environmental conditions included at least 12 h of free moisture (dew) at 20°C - 30°C. Spray mixtures containing approximately 1.0 × 105 or more conidia·ml–1 gave maximum control when coffee senna seedlings were sprayed until runoff occurred. Coffee senna seedlings that were in the cotyledon to first-leaf growth stage were most susceptible to this pathogen. Weed control efficacy studies under field conditions demonstrated that control of coffee senna was directly proportional to the inoculum concentration applied. Results of these tests suggest that this fungus has potential as a mycoherbicide to control coffee senna, a serious weed in the southeastern U.S.展开更多
Litchi anthracnose caused by Colletotrictum gloeosporioides (Penz) Saec. is an extremely destructive and widely distributed disease, which results in poor market value. Borate, an essential plant micronutrient that ...Litchi anthracnose caused by Colletotrictum gloeosporioides (Penz) Saec. is an extremely destructive and widely distributed disease, which results in poor market value. Borate, an essential plant micronutrient that helps plant growth and has been used extensively in industry and agriculture as a safe method for control of fungi, was effective in the form of potassium tetraborate for control of C. gloeosporioides (Penz). In this study, boron strongly inhibited spore germina- tion, germ tube elongation, and mycelial spread of C. gloeosporioides (Penz) in the culture medium. Application of boron at 1% caused the appearance of abnor- mal spores (disrupted) in some cases. On the basis of propidium iodide fluorescent staining, the loss of membrane integrity in C. gloeosporioides (Penz) was ob- served after boron treatment. Furthermore, Boron led to the leakage of cellular constituents (soluble proteins and carbohydrates) from hyphae of C. gloeosporioides (Penz). These data suggest that the mechanisms may be directly related with the disruption effect of boron on cell membrane of the fungal pathogen, resulting in the breakdown of cell membrane structure and loss of cytoplasmic materials from the hyphae.展开更多
We isolated naturally occurring actinomycetes with an ability to produce metabolites having antifungal property against, Colletotrichum gloeosporioides, the causal agent of mango anthracnose. One promising strain was ...We isolated naturally occurring actinomycetes with an ability to produce metabolites having antifungal property against, Colletotrichum gloeosporioides, the causal agent of mango anthracnose. One promising strain was strong antifungal activity, was selected for further studies. Based on the physiological and biochemical characteristics, the bacterial strain was identical to Streptomyces aureofaciens. Culture filtrate collected from the exponential and stationary phases inhibited the growth of fungus tested, indicating that growth suppression was due to extracellular antifungal metabolites present in culture filtrate. Isolate highly produced extracellular chitinase and β-1,3-glucanase during the exponential and late exponential phases, respectively. In order to standardize the metabolite production some cultural conditions like different incubation time in hours, pH, carbon sources and concentrations and nitrogen source were determined. During fermentation, growth, pH and hydrolysis enzymes production were monitored .Treatment with bioactive components exhibited a significantly high protective activity against development of anthracnose disease on mango trees and increased fruit yield.展开更多
Apple bitter rot is a serious agricultural disease caused by Colletotrichum gloeosporioides.In recent years,carbendazim-resistant C.gloeosporioides strains bearing an E198A point mutation in theβ-tubulin gene(GAG to ...Apple bitter rot is a serious agricultural disease caused by Colletotrichum gloeosporioides.In recent years,carbendazim-resistant C.gloeosporioides strains bearing an E198A point mutation in theβ-tubulin gene(GAG to GCG)have emerged,threatening global apple production.As such,rapidly detecting the presence of this E198Amutation in C.gloeosporioides isolates is essential in order to monitor the spread of this pathogen and to prevent outbreaks of disease.Herein,we developed a simple loop-mediated isothermal amplification(LAMP)approach to detecting the E198A mutation in C.gloeosporioides isolates from‘Gala’apple samples.This optimized LAMP protocol was sufficient to establish the E198A genotype of a given isolate following a 60min incubation at 63℃ by using four specific primers.The results of this reaction could be interpreted visually based on a fluorescent yellow-green color change upon the addition of the SYBR Green I dye,and were additionally confirmed via gel electrophoresis.Importantly,this LAMP assay was capable of rapidly and reliably detecting apples that were infected with carbendazim-resistant isolates harboring this E198A mutation.In conclusion,this LAMP assay in this study can rapidly,specifically,and sensitively detect cases of apple bitter rot caused by C.gloeosporioides isolates harboring the E198A mutation.展开更多
Colletotrichum gloeosporioides is the causal agent of anthracnose disease in fruits and vegetables, representing a global problem. The use of biocontrol agents has proved effective against fungal diseases in a wide va...Colletotrichum gloeosporioides is the causal agent of anthracnose disease in fruits and vegetables, representing a global problem. The use of biocontrol agents has proved effective against fungal diseases in a wide variety of products. In this work, the antifungal activity of Wickerhamomyces anomalus against C. gloeosporioides isolated from contaminated avocados was evaluated. The antagonism and volatile compound inhibition were measured on Petri dishes. In the mixed cultures, the mycelia damage was observed by scanning electron microscope (SEM). Chitinase and glucanase production by the antagonism was quantified by the reducing sugars method, and biofilm formation was evaluated with 1% crystal violet. The yeast W. anomalus could reduce the growth of C. gloeosporioides up to 65% by direct antagonism and 10% by volatile compounds. The antagonist did not allow the conidia germination and mycelia growth in any of the tested formulations. SEM showed mycelial damage caused by W. anomalus. The antagonist showed adhesion to the mycelium by a polysaccharide biofilm. The presence of mycelium stimulated the hydrolytic enzyme production with the maximal activity of 21.4 U/mg for chitinases at 24 h and 10 U/mg for glucanases at 60 h. These results showed that W. anomalus used together different mechanisms to express its antifungal activity against C. gloeosporioides. This study might be the first report for this phytopathogen isolated from avocado fruits, which could represent an opportunity to establish biocontrol of diseases for this agricultural product.展开更多
In a survey of endophytic fungi associated with endemic plant Cinnamomum malabatrum leaves harbored a bioactive endophytic isolate CMS 3 was identified as Colletotrichum gloeosporioides through morphological and phylo...In a survey of endophytic fungi associated with endemic plant Cinnamomum malabatrum leaves harbored a bioactive endophytic isolate CMS 3 was identified as Colletotrichum gloeosporioides through morphological and phylogenetic analysis based on ITS-rDNA.The ethyl acetate extract of fermentation broth of Colletotrichum gloeosporioides CMS 3 displayed antimicrobial activity against gram positive and gram negative bacteria as well as the fungal pathogen,Candida albicans.The ethyl acetate crude extract showed in vitro cytotoxicity against the HeLa,MCF-7 and MG63 cancer cell lines with the IC50 values of 94.2μg/ml,84.3μg/ml and 162μg/ml respectively.Gas chromatography and Mass Spectrophotometry(GC-MS)analysis of crude extract confirmed that CMS 3 was a prolific producer of secondary metabolites,in which nearly 74%of the metabolites not listed in the NIST database.Major compounds were phenol 3,5-dimethoxy acetate(11.82%),4'-isopropylidene-bis-(2-cyclohexyl)phenol,N-Didehydrohexacarboxyl-2,4,5-trimethylpiperazine and 1,2,4-Triazolium ylide.These metabolites may be responsible for its antimicrobial and cytotoxic activities.展开更多
基金Supported by the Jiangsu Provincial Fund for Self-dependent Innovation of AgriculturalTechnology(CX10209)Special Fund for the Technology System Construction ofModern Pear Industry(nycytx-29-09)National"948"Project(2010-C18)~~
文摘[Objective] This study aimed to explore the biological characteristics of Col etotrichum gloeosporioides in pears. [Method] Twenty-five C. gloeosporioides strains were isolated and identified from the diseased samples. Their pathogenicity was identified by inoculating the surface of punctured pears with fungal discs. The effects of different temperatures, pH values, carbon sources and nitrogen sources on the growth of C. gloeosporioides mycelia were explored by incubating fungal discs on the center of plates. [Result] Among the twenty-five C. gloeosporioides strains, three had strong pathogenicity, and eighteen had intermediate pathogenicity, and four strains had weak pathogenicity. Those highly-pathogenic strains had darker colonies, with dense mycelia, whereas those lowly-pathogenic ones had white colonies, with sparse mycelia. Those with fast-growing colonies showed strong pathogenicity, while those with slowly-growing colonies displayed weak pathogenicity. There was no relationship between conidia yield and pathogenicity. The optimum temperature for the growth of C. gloeosporioides mycelia was 25-30 ℃, and the optimum pH was 5.0-7.0. C. gloeosporioides could make use of various carbon sources (monosaccharide and disaccharide), inorganic and organic nitrogen sources, and the optimal carbon source and nitrogen source were sucrose and beef extract, respectively. [Conclusion] Our study benefits further understanding of C. gloeospori-oides and helps to control pear anthracnose more effectively.
基金financially supported by the National Natural Science Foundation of China(31701882)the Competitive Nature Project of the Hubei Academy of Agricultural Sciences,China(2016JZXJH006)the Agricultural Science and Technology Innovation Center Program of Hubei Province,China(2016-620-000-001-014)
文摘The ascomycete fungus Colletotrichum gloeosporioides is a devastating plant pathogen with a wide host range and worldwide distribution. Carbendazim has been widely used to control anthracnose caused by the C. gloeosporioides complex in China for more than 30 years and resistance to carbendazim has been reported in China. A total of 125 Colletotrichum isolates of strawberry and yam were collected from different geographical regions in Hubei Province, China. Approximately 52.8% of Colletotrichum spp. isolates showed resistance to carbendazim. The isolates tested in this study belong to four species, and the frequencies of resistant isolates differed across Colletotrichum species. Resistant isolates were found in C. siamense and C. fructicola. In contrast, all isolates of C. gloeosporioides and C. aenigma were sensitive to carbendazim. Highly carbendazim-resistant isolates harbored the E198A mutation in the β-tubulin 2 (TUB2) gene, whereas moderately carbendazim-resistant isolates harbored the F200Y mutation in the TUB2 gene. Carbendazim-sensitive Colletotrichum isolates in this study were not genetically similar enough to form a separate cluster from resistant isolates. The result of this study emphasizes the importance of knowing which Colletotrichum sp. is present, when strategies for disease control are made.
基金funded by the Natural Science Foundation of Fujian Province, China (2021J01476)East and West Cooperation Project of the Fujian Academy of Agricultural Sciences, China (DKBF2022-01)+2 种基金the Project of Department of Agriculture and Rural Affairs in Fujian Province (2021PZQS006)the “5511” Collaborative Innovation Project of High-quality Agricultural Development and Surpassment in Fujian Province (XTCXGC2021011)the Team Project Funding of Scientific Research Innovation of FAAS, China (CXTD2021002-1).
文摘Anthracnose,caused by Colletotrichum truncatum and C.gloeosporioides,is amongst the most serious diseases of soybean in China.Picoxystrobin,a quinone outside inhibitor fungicide,is commonly used for the control of anthracnose.Its resistance risk and mechanism in C.truncatum and C.gloeosporioides are unclear.In this study,the sensitivities of 128 C.truncatum and 121 C.gloeosporioides isolates to picoxystrobin were investigated,and unimodal distributions were observed with average EC_(50)values of 0.7740 and 1.1561μg mL^(-1),respectively.Eleven picoxystrobin-resistant mutants of C.truncatum and six mutants of C.gloeosporioides were acquired,with EC_(50)values varying from 5.40-152.96 and 13.53-28.30μg mL^(-1),respectively.Compared to the parental isolates,mutants showed similar or higher relative fitness in conidial production and germination,and pathogenicity.Collectively,the resistance risk of C.truncatum and C.gloeosporioides to picoxystrobin is moderate to high.There was positive cross-resistance between picoxystrobin and pyraclostrobin,but not between picoxystrobin and fluazinam,difenoconazole,or propiconazole.The G143S mutation in Cyt b protein was detected in seven high-resistant mutants of C.truncatum(RF>100),and G137R occurred in four moderate-resistant mutants(RF<_(50)).Contrastingly,there were no point mutations in Cyt b of any C.gloeosporioides mutants.Molecular docking confirmed that two mutations conferred different resistance levels to picoxystrobin.Under greenhouse trials,picoxystrobin did not control mutants with the G143S mutation,those bearing G137R or no point mutation were somewhat controlled,but at a lower level compared to wild-type isolates.These results showed that integrated management strategies should be implemented to preserve fungicide effectiveness.
文摘A fungal pathogen, Colletotrichum gloeosporioides was isolated from a greenhouse-grown seedling of coffee senna (Cassia occidentalis) and evaluated as a mycoherbicide for that weed. Host range tests revealed that coffee senna, wild senna (C. marilandica), and sicklepod (C. obtusifolia) were also affected by this pathogen, but 35 other crop and weed species, representing 8 botanical families were not affected. The fungus sporulated prolifically on solid and liquid media with maximum spore germination and growth occurring at 20°C - 30°C. Optimal environmental conditions included at least 12 h of free moisture (dew) at 20°C - 30°C. Spray mixtures containing approximately 1.0 × 105 or more conidia·ml–1 gave maximum control when coffee senna seedlings were sprayed until runoff occurred. Coffee senna seedlings that were in the cotyledon to first-leaf growth stage were most susceptible to this pathogen. Weed control efficacy studies under field conditions demonstrated that control of coffee senna was directly proportional to the inoculum concentration applied. Results of these tests suggest that this fungus has potential as a mycoherbicide to control coffee senna, a serious weed in the southeastern U.S.
基金Supported by China Agriculture Research System(CARS-33-25)
文摘Litchi anthracnose caused by Colletotrictum gloeosporioides (Penz) Saec. is an extremely destructive and widely distributed disease, which results in poor market value. Borate, an essential plant micronutrient that helps plant growth and has been used extensively in industry and agriculture as a safe method for control of fungi, was effective in the form of potassium tetraborate for control of C. gloeosporioides (Penz). In this study, boron strongly inhibited spore germina- tion, germ tube elongation, and mycelial spread of C. gloeosporioides (Penz) in the culture medium. Application of boron at 1% caused the appearance of abnor- mal spores (disrupted) in some cases. On the basis of propidium iodide fluorescent staining, the loss of membrane integrity in C. gloeosporioides (Penz) was ob- served after boron treatment. Furthermore, Boron led to the leakage of cellular constituents (soluble proteins and carbohydrates) from hyphae of C. gloeosporioides (Penz). These data suggest that the mechanisms may be directly related with the disruption effect of boron on cell membrane of the fungal pathogen, resulting in the breakdown of cell membrane structure and loss of cytoplasmic materials from the hyphae.
文摘We isolated naturally occurring actinomycetes with an ability to produce metabolites having antifungal property against, Colletotrichum gloeosporioides, the causal agent of mango anthracnose. One promising strain was strong antifungal activity, was selected for further studies. Based on the physiological and biochemical characteristics, the bacterial strain was identical to Streptomyces aureofaciens. Culture filtrate collected from the exponential and stationary phases inhibited the growth of fungus tested, indicating that growth suppression was due to extracellular antifungal metabolites present in culture filtrate. Isolate highly produced extracellular chitinase and β-1,3-glucanase during the exponential and late exponential phases, respectively. In order to standardize the metabolite production some cultural conditions like different incubation time in hours, pH, carbon sources and concentrations and nitrogen source were determined. During fermentation, growth, pH and hydrolysis enzymes production were monitored .Treatment with bioactive components exhibited a significantly high protective activity against development of anthracnose disease on mango trees and increased fruit yield.
基金This work was funded by Major Scientific and Technological Project of Xinjiang Corps(Grant No.2019AA004)China Agriculture Research System(Grant No.CARS-27).
文摘Apple bitter rot is a serious agricultural disease caused by Colletotrichum gloeosporioides.In recent years,carbendazim-resistant C.gloeosporioides strains bearing an E198A point mutation in theβ-tubulin gene(GAG to GCG)have emerged,threatening global apple production.As such,rapidly detecting the presence of this E198Amutation in C.gloeosporioides isolates is essential in order to monitor the spread of this pathogen and to prevent outbreaks of disease.Herein,we developed a simple loop-mediated isothermal amplification(LAMP)approach to detecting the E198A mutation in C.gloeosporioides isolates from‘Gala’apple samples.This optimized LAMP protocol was sufficient to establish the E198A genotype of a given isolate following a 60min incubation at 63℃ by using four specific primers.The results of this reaction could be interpreted visually based on a fluorescent yellow-green color change upon the addition of the SYBR Green I dye,and were additionally confirmed via gel electrophoresis.Importantly,this LAMP assay was capable of rapidly and reliably detecting apples that were infected with carbendazim-resistant isolates harboring this E198A mutation.In conclusion,this LAMP assay in this study can rapidly,specifically,and sensitively detect cases of apple bitter rot caused by C.gloeosporioides isolates harboring the E198A mutation.
文摘Colletotrichum gloeosporioides is the causal agent of anthracnose disease in fruits and vegetables, representing a global problem. The use of biocontrol agents has proved effective against fungal diseases in a wide variety of products. In this work, the antifungal activity of Wickerhamomyces anomalus against C. gloeosporioides isolated from contaminated avocados was evaluated. The antagonism and volatile compound inhibition were measured on Petri dishes. In the mixed cultures, the mycelia damage was observed by scanning electron microscope (SEM). Chitinase and glucanase production by the antagonism was quantified by the reducing sugars method, and biofilm formation was evaluated with 1% crystal violet. The yeast W. anomalus could reduce the growth of C. gloeosporioides up to 65% by direct antagonism and 10% by volatile compounds. The antagonist did not allow the conidia germination and mycelia growth in any of the tested formulations. SEM showed mycelial damage caused by W. anomalus. The antagonist showed adhesion to the mycelium by a polysaccharide biofilm. The presence of mycelium stimulated the hydrolytic enzyme production with the maximal activity of 21.4 U/mg for chitinases at 24 h and 10 U/mg for glucanases at 60 h. These results showed that W. anomalus used together different mechanisms to express its antifungal activity against C. gloeosporioides. This study might be the first report for this phytopathogen isolated from avocado fruits, which could represent an opportunity to establish biocontrol of diseases for this agricultural product.
文摘In a survey of endophytic fungi associated with endemic plant Cinnamomum malabatrum leaves harbored a bioactive endophytic isolate CMS 3 was identified as Colletotrichum gloeosporioides through morphological and phylogenetic analysis based on ITS-rDNA.The ethyl acetate extract of fermentation broth of Colletotrichum gloeosporioides CMS 3 displayed antimicrobial activity against gram positive and gram negative bacteria as well as the fungal pathogen,Candida albicans.The ethyl acetate crude extract showed in vitro cytotoxicity against the HeLa,MCF-7 and MG63 cancer cell lines with the IC50 values of 94.2μg/ml,84.3μg/ml and 162μg/ml respectively.Gas chromatography and Mass Spectrophotometry(GC-MS)analysis of crude extract confirmed that CMS 3 was a prolific producer of secondary metabolites,in which nearly 74%of the metabolites not listed in the NIST database.Major compounds were phenol 3,5-dimethoxy acetate(11.82%),4'-isopropylidene-bis-(2-cyclohexyl)phenol,N-Didehydrohexacarboxyl-2,4,5-trimethylpiperazine and 1,2,4-Triazolium ylide.These metabolites may be responsible for its antimicrobial and cytotoxic activities.