Influence of the gassing materials, such as PA6, PMMA, and POM on the dielectric properties of air are investigated. In this work, the fundamental electron collision cross section data were carefully selected and vali...Influence of the gassing materials, such as PA6, PMMA, and POM on the dielectric properties of air are investigated. In this work, the fundamental electron collision cross section data were carefully selected and validated. Then the species compositions of the air–organic vapor mixtures were calculated based on the Gibbs free energy minimization. Finally, the Townsend ionization coefficient, the Townsend electron attachment coefficient and the critical reduced electric field strength were derived from the calculated electron energy distribution function by solving the Boltzmann transport equation. The calculation results indicated that H;O with large attachment cross sections has a great impact on the critical reduced electric field strength of the air–organic vapor mixtures. On the other hand, the vaporization of gassing materials can help to increase the dielectric properties of air circuit breakers to some degree.展开更多
Employing both the Dirac R-matrix and the relativistic distorted wave with independent process and isolated reso- nance approaches, we report resonance enhanced electron impact excitation data (specifically, effectiv...Employing both the Dirac R-matrix and the relativistic distorted wave with independent process and isolated reso- nance approaches, we report resonance enhanced electron impact excitation data (specifically, effective collision strengths) among the lowest 41 levels from the n = 3 configurations of Cu XV. The results show that the latter approach can obtain resonance contributions reasonably well for most excitations of Cu XV, though a comparison between the two approaches shows that the close-coupling effects are truly significant for rather weak excitations, especially for two-electron excitations from the 3s3p4 to 3s23p23d configuration. Resonance contributions are significant (more than two orders of magnitude) for many excitations and dramatically influence the line intensity ratios associated with density diagnostics.展开更多
基金supported by the National Key Basic Research Program of China(973 Program)2015CB251002National Natural Science Foundation of China under Grant 51521065,51577145+1 种基金the Fundamental Research Funds for the Central UniversitiesShaanxi Province Natural Science Foundation 2013JM-7010
文摘Influence of the gassing materials, such as PA6, PMMA, and POM on the dielectric properties of air are investigated. In this work, the fundamental electron collision cross section data were carefully selected and validated. Then the species compositions of the air–organic vapor mixtures were calculated based on the Gibbs free energy minimization. Finally, the Townsend ionization coefficient, the Townsend electron attachment coefficient and the critical reduced electric field strength were derived from the calculated electron energy distribution function by solving the Boltzmann transport equation. The calculation results indicated that H;O with large attachment cross sections has a great impact on the critical reduced electric field strength of the air–organic vapor mixtures. On the other hand, the vaporization of gassing materials can help to increase the dielectric properties of air circuit breakers to some degree.
基金supported by the National Natural Science Foundation of China(Grant Nos.11076009 and 11374062)the Chinese Association of Atomic and Molecular Data,the Chinese National Fusion Project for ITER(Grant No.2015GB117000)the Leading Academic Discipline Project of Shanghai,China(Grant No.B107)
文摘Employing both the Dirac R-matrix and the relativistic distorted wave with independent process and isolated reso- nance approaches, we report resonance enhanced electron impact excitation data (specifically, effective collision strengths) among the lowest 41 levels from the n = 3 configurations of Cu XV. The results show that the latter approach can obtain resonance contributions reasonably well for most excitations of Cu XV, though a comparison between the two approaches shows that the close-coupling effects are truly significant for rather weak excitations, especially for two-electron excitations from the 3s3p4 to 3s23p23d configuration. Resonance contributions are significant (more than two orders of magnitude) for many excitations and dramatically influence the line intensity ratios associated with density diagnostics.