Assessing large-scale patterns of gross primary production (GPP) in arid and semi-arid (ASA) areas is important for both scientific and practical purposes.Remote sensing-based models,which integrate satellite data wit...Assessing large-scale patterns of gross primary production (GPP) in arid and semi-arid (ASA) areas is important for both scientific and practical purposes.Remote sensing-based models,which integrate satellite data with input from ground-based meteorological measurements and vegetation characteristics,improve spatially extended estimates of vegetation productivity with high accuracy.In this study,the authors simulated GPP in ASA areas by integrating moderate resolution imaging spectral radiometer (MODIS) data with eddy covariance and meteorological measurements at the flux tower sites using the Vegetation Photosynthesis Model (VPM),which is a remote sensing-based model for analyzing the spatial pattern of GPP in different land cover types.The field data were collected by coordinating observations at nine stations in 2008.The results indicate that in the region during the growing season GPP was highest in cropland sites,second highest in woodland sites,and lowest in grassland sites.VPM captured the temporal and spatial characteristics of GPP for different land covers in ASA areas.Further,Enhanced Vegetation Index (EVI) had a strong liner relationship with GPP in densely vegetated areas,while the Normalized Difference Vegetation Index (NDVI) had a strong liner relationship with GPP over less dense vegetation.This study demonstrates the potential of satellite-driven models for scaling-up GPP,which is a key component for studying the carbon cycle at regional and global scales.展开更多
This paper considers a scheduling problem in industrial make-and-pack batch production process. This process equips with sequence-dependent changeover time, multipurpose storage units with limited capacity, storage ti...This paper considers a scheduling problem in industrial make-and-pack batch production process. This process equips with sequence-dependent changeover time, multipurpose storage units with limited capacity, storage time, batch splitting, partial equipment connectivity and transfer time. The objective is to make a production plan to satisfy all constraints while meeting demand requirement of packed products from various product families. This problem is NP-hard and the problem size is exponentially large for a realistic-sized problem. Therefore,we propose a genetic algorithm to handle this problem. Solutions to the problems are represented by chromosomes of product family sequences. These sequences are decoded to assign the resource for producing packed products according to forward assignment strategy and resource selection rules. These techniques greatly reduce unnecessary search space and improve search speed. In addition, design of experiment is carefully utilized to determine appropriate parameter settings. Ant colony optimization and Tabu search are also implemented for comparison. At the end of each heuristics, local search is applied for the packed product sequence to improve makespan. In an experimental analysis, all heuristics show the capability to solve large instances within reasonable computational time. In all problem instances, genetic algorithm averagely outperforms ant colony optimization and Tabu search with slightly longer computational time.展开更多
Oil product pipelines have features such as transporting multiple materials, ever-changing operating conditions, and synchronism between the oil input plan and the oil offloading plan. In this paper, an optimal model ...Oil product pipelines have features such as transporting multiple materials, ever-changing operating conditions, and synchronism between the oil input plan and the oil offloading plan. In this paper, an optimal model was established for a single-source multi-distribution oil pro- duct pipeline, and scheduling plans were made based on supply. In the model, time node constraints, oil offloading plan constraints, and migration of batch constraints were taken into consideration. The minimum deviation between the demanded oil volumes and the actual offloading volumes was chosen as the objective function, and a linear programming model was established on the basis of known time nodes' sequence. The ant colony optimization algo- rithm and simplex method were used to solve the model. The model was applied to a real pipeline and it performed well.展开更多
The recycling and remanufacturing of end-of-life products are significant for environmental protection and resource conservation.Disassembly is an essential process of remanufacturing end-of-life products.Effective di...The recycling and remanufacturing of end-of-life products are significant for environmental protection and resource conservation.Disassembly is an essential process of remanufacturing end-of-life products.Effective disassembly plans help improve disassembly efficiency and reduce disassembly costs.This paper studies a disassembly planning problem with operation attributes,in which an integrated decision of the disassembly sequence,disassembly directions,and disassembly tools are made.Besides,a mathematical model is formulated with the objective of minimizing the penalty cost caused by the changing of operation attributes.Then,a neighborhood modularization-based artificial bee colony algorithm is developed,which contains a modular optimized design.Finally,two case studies with different scales and complexities are used to verify the performance of the proposed approach,and experimental results show that the proposed algorithm outperforms the two existing methods within an acceptable computational time.展开更多
基金supported by the National Basic Research Program of China (Grant Nos. 2009CB723904 and 2006CB400500)
文摘Assessing large-scale patterns of gross primary production (GPP) in arid and semi-arid (ASA) areas is important for both scientific and practical purposes.Remote sensing-based models,which integrate satellite data with input from ground-based meteorological measurements and vegetation characteristics,improve spatially extended estimates of vegetation productivity with high accuracy.In this study,the authors simulated GPP in ASA areas by integrating moderate resolution imaging spectral radiometer (MODIS) data with eddy covariance and meteorological measurements at the flux tower sites using the Vegetation Photosynthesis Model (VPM),which is a remote sensing-based model for analyzing the spatial pattern of GPP in different land cover types.The field data were collected by coordinating observations at nine stations in 2008.The results indicate that in the region during the growing season GPP was highest in cropland sites,second highest in woodland sites,and lowest in grassland sites.VPM captured the temporal and spatial characteristics of GPP for different land covers in ASA areas.Further,Enhanced Vegetation Index (EVI) had a strong liner relationship with GPP in densely vegetated areas,while the Normalized Difference Vegetation Index (NDVI) had a strong liner relationship with GPP over less dense vegetation.This study demonstrates the potential of satellite-driven models for scaling-up GPP,which is a key component for studying the carbon cycle at regional and global scales.
基金Thailand Research Fund (Grant #MRG5480176)National Research University Project of Thailand Office of Higher Education Commission
文摘This paper considers a scheduling problem in industrial make-and-pack batch production process. This process equips with sequence-dependent changeover time, multipurpose storage units with limited capacity, storage time, batch splitting, partial equipment connectivity and transfer time. The objective is to make a production plan to satisfy all constraints while meeting demand requirement of packed products from various product families. This problem is NP-hard and the problem size is exponentially large for a realistic-sized problem. Therefore,we propose a genetic algorithm to handle this problem. Solutions to the problems are represented by chromosomes of product family sequences. These sequences are decoded to assign the resource for producing packed products according to forward assignment strategy and resource selection rules. These techniques greatly reduce unnecessary search space and improve search speed. In addition, design of experiment is carefully utilized to determine appropriate parameter settings. Ant colony optimization and Tabu search are also implemented for comparison. At the end of each heuristics, local search is applied for the packed product sequence to improve makespan. In an experimental analysis, all heuristics show the capability to solve large instances within reasonable computational time. In all problem instances, genetic algorithm averagely outperforms ant colony optimization and Tabu search with slightly longer computational time.
基金part of the Program of"Study on the mechanism of complex heat and mass transfer during batch transport process in products pipelines"funded under the National Natural Science Foundation of China(grant number 51474228)
文摘Oil product pipelines have features such as transporting multiple materials, ever-changing operating conditions, and synchronism between the oil input plan and the oil offloading plan. In this paper, an optimal model was established for a single-source multi-distribution oil pro- duct pipeline, and scheduling plans were made based on supply. In the model, time node constraints, oil offloading plan constraints, and migration of batch constraints were taken into consideration. The minimum deviation between the demanded oil volumes and the actual offloading volumes was chosen as the objective function, and a linear programming model was established on the basis of known time nodes' sequence. The ant colony optimization algo- rithm and simplex method were used to solve the model. The model was applied to a real pipeline and it performed well.
基金National Natural Science Foundation of China(Grant Nos.52205526,52205529)Basic and Applied Basic Research Project of the Guangzhou Basic Research Program of China(Grant No.202201010284)+6 种基金National Foreign Expert Project of the Ministry of Science and Technology of China(Grant No.G2021199026L)National Key Research and Development Program of China(Grant Nos.2021YFB3301701,2021YFB3301702)Guangdong Provincial Graduate Education Innovation Program of China(Grant No.82620516)Guangzhou Municipal Innovation Leading Team Project of China(Grant No.201909010006)Guangdong Provincial"Quality Engineering"Construction Project of China(Grant No.210308)Guangdong Provincial Basic and Applied Basic Research Foundation of China(Grant No.2019A1515110399)Fundamental Research Funds for the Central Universities of China(Grant No.21620360).
文摘The recycling and remanufacturing of end-of-life products are significant for environmental protection and resource conservation.Disassembly is an essential process of remanufacturing end-of-life products.Effective disassembly plans help improve disassembly efficiency and reduce disassembly costs.This paper studies a disassembly planning problem with operation attributes,in which an integrated decision of the disassembly sequence,disassembly directions,and disassembly tools are made.Besides,a mathematical model is formulated with the objective of minimizing the penalty cost caused by the changing of operation attributes.Then,a neighborhood modularization-based artificial bee colony algorithm is developed,which contains a modular optimized design.Finally,two case studies with different scales and complexities are used to verify the performance of the proposed approach,and experimental results show that the proposed algorithm outperforms the two existing methods within an acceptable computational time.