All-dielectric metasurface, which features low optical absorptance and high resolution, is becoming a promising candidate for full-color generation. However, the optical response of current metamaterials is fixed and ...All-dielectric metasurface, which features low optical absorptance and high resolution, is becoming a promising candidate for full-color generation. However, the optical response of current metamaterials is fixed and lacks active tuning. In this work, we demonstrate a reconfigurable and polarization-dependent active color generation technique by incorporating low-loss phase change materials(PCMs) and CaF_2 all-dielectric substrate. Based on the strong Mie resonance effect and low optical absorption structure, a transflective, full-color with high color purity and gamut value is achieved. The spectrum can be dynamically manipulated by changing either the polarization of incident light or the PCM state. High transmittance and reflectance can be simultaneously achieved by using low-loss PCMs and substrate. The novel active metasurfaces can bring new inspiration in the areas of optical encryption, anti-counterfeiting, and display technologies.展开更多
Few studies have examined the impacts of color stimuli on perioperative mood and quality of recovery;thus, this randomized controlled trial aimed to assess impacts of vividly colored accessories on mood and quality of...Few studies have examined the impacts of color stimuli on perioperative mood and quality of recovery;thus, this randomized controlled trial aimed to assess impacts of vividly colored accessories on mood and quality of recovery after breast surgery. This single-center, single-blind randomized controlled trial included 36 participants (all aged ≥ 20 years) who were randomized into intervention (n = 19) and control groups (n = 17). The intervention group received vividly colored accessories. The primary and secondary study outcomes were patient mood, evaluated using a two-dimensional mood scale, and postoperative recovery, evaluated using Quality of Recovery-15, which were assessed on postoperative day 3. There were no statistical intergroup differences in the scores of the Two-Dimensional Mood Scale (11.2 [intervention group] vs. 10.4 [control group], P = 0.75) and Quality of Recovery-15 (126.8 [intervention group] vs. 129.3 [control group], P = 0.73). Thus, the use of vividly colored accessories by patients undergoing breast surgery was not found to affect patients’ mood and quality of recovery.展开更多
Under the current context of climate change, supplementary irrigation may be needed for crop production resilience. We determined the effects of supplementary irrigation on sorghum grain yield in the dry Savannah regi...Under the current context of climate change, supplementary irrigation may be needed for crop production resilience. We determined the effects of supplementary irrigation on sorghum grain yield in the dry Savannah region of Togo. A two-year trial was conducted in a controlled environment at AREJ, an agro-ecological center in Cinkassé. The plant material was sorghum variety Sorvato 28. The experimental design was a Completely Randomized Block with three replications and three treatments as follows: T0 control plot (rainfed conditions);T1 (supplementary irrigation from flowering to grain filling stage) and T2 (supplementary irrigation from planting to grain filling stage). Two irrigation techniques (furrow and Californian system) were used under each watering treatment. The results showed that irrigation technique significantly affected panicle length with no effect on 1000 grains mass. Panicle length and grain yields varied from 15.59 to 25.71 cm and 0.0 to 2.06 t∙h−1, respectively, with the highest values (25.66 cm and 2.06 t∙h−1, respectively) under the T2 treatment with the California system-based supplementary irrigation. The comparison of results obtained on treatment T0 and T2, shows that supplementary irrigation increased the yields by at least 68.62%. Supplementary irrigation during sowing and growing season (T2) improved sorghum yields in the dry savannahs of Togo, with a better performance of the California irrigation system.展开更多
Yellowhorn(Xanthoceras sorbifolium), especially its varieties, is the red petal yellowhorn(X. sorbifolium var. purpurea), an important tree species with great ornamental value, and its flower petals change color throu...Yellowhorn(Xanthoceras sorbifolium), especially its varieties, is the red petal yellowhorn(X. sorbifolium var. purpurea), an important tree species with great ornamental value, and its flower petals change color throughout the flowering period. In this study, we mainly focused on the mechanism of the petal color change with transcriptomics and metabolomics data. A phased chromosome-scale assembly of the red petal yellowhorn genome was generated using the PacBio high-fidelity reads, Illumina short reads, and Phase genomics Proximo Hi-C data. The final de novo assembly yielded 533.67 Mb with a contig N50 of 5.42 Mb, and 27 501 protein-coding genes were predicted. Notably, an alternate haplotig assembly was also obtained. Furthermore, a variation database for the alleles within the genome was constructed. Subsequently, the expression pattern of flower pigmentation-related genes and allelic expression imbalance events were investigated. Apart from 6 genes involved in the anthocyanin biosynthesis pathway regulated by the activation of 15 MYB-bHLH-WD40s, the increased expression of senescencerelated gene 1(SRG1) and 2-oxoglutarate-dependent dioxygenase(DIOX5) might also result in decreasing content of lutein and increasing abundance of(E/Z)-phytoene, cyanidin-3-O-rutinoside, and cyanidin-3-O-sambubioside. These changes in genes and metabolites were most likely related to the petal color change in red petal yellowhorn. This phased chromosome-scale genome assembly provides more accurate genomic information for future molecular breeding and facilitates allele function studies of the red petal yellowhorn.展开更多
The autotetraploid Carassius auratus(4nRR,4n=200,RRRR)is derived from whole-genome duplication of Carassius auratus red var.(RCC,2n=100,RR).In the current study,we demonstrated that chromatophores and pigment changes ...The autotetraploid Carassius auratus(4nRR,4n=200,RRRR)is derived from whole-genome duplication of Carassius auratus red var.(RCC,2n=100,RR).In the current study,we demonstrated that chromatophores and pigment changes directly caused the coloration and variation of 4nRR skin(red in RCC,brownish-yellow in4nRR).To further explore the molecular mechanisms underlying coloration formation and variation in 4nRR,we performed transcriptome profiling and molecular functional verification in RCC and 4nRR.Results revealed that scarb1,associated with carotenoid metabolism,underwent significant down-regulation in 4nRR.Efficient editing of this candidate pigment gene provided clear evidence of its significant role in RCC coloration.Subsequently,we identified four divergent scarb1 homeologs in 4nRR:two original scarb1 homeologs from RCC and two duplicated ones.Notably,three of these homeologs possessed two highly conserved alleles,exhibiting biased and allelespecific expression in the skin.Remarkably,after precise editing of both the original and duplicated scarb1homeologs and/or alleles,4nRR individuals,whether singly or multiply mutated,displayed a transition from brownishyellow skin to a cyan-gray phenotype.Concurrently,the proportional areas of the cyan-gray regions displayed a gene-dose correlation.These findings illustrate the subfunctionalization of duplicated scarb1,with all scarb1genes synergistically and equally contributing to the pigmentation of 4nRR.This is the first report concerning the functional differentiation of duplicated homeologs in an autopolyploidfish,substantiallyenrichingour understanding of coloration formation and change within this group of organisms.展开更多
High-resolution multi-color printing relies upon pixelated optical nanostructures,which is crucial to promote color display by producing nonbleaching colors,yet requires simplicity in fabrication and dynamic switching...High-resolution multi-color printing relies upon pixelated optical nanostructures,which is crucial to promote color display by producing nonbleaching colors,yet requires simplicity in fabrication and dynamic switching.Antimony trisulfide(Sb_(2)S_(3))is a newly rising chalcogenide material that possesses prompt and significant transition of its optical characteristics in the visible region between amorphous and crystalline phases,which holds the key to color-varying devices.Herein,we proposed a dynamically switchable color printing method using Sb_(2)S_(3)-based stepwise pixelated Fabry-Pérot(FP)cavities with various cavity lengths.The device was fabricated by employing a direct laser patterning that is a less timeconsuming,more approachable,and low-cost technique.As switching the state of Sb_(2)S_(3) between amorphous and crystalline,the multi-color of stepwise pixelated FP cavities can be actively changed.The color variation is due to the profound change in the refractive index of Sb_(2)S_(3) over the visible spectrum during its phase transition.Moreover,we directly fabricated sub-50 nm nano-grating on ultrathin Sb_(2)S_(3) laminate via microsphere 800-nm femtosecond laser irradiation in far field.The minimum feature size can be further decreased down to~45 nm(λ/17)by varying the thickness of Sb_(2)S_(3) film.Ultrafast switchable Sb_(2)S_(3) photonic devices can take one step toward the next generation of inkless erasable papers or displays and enable information encryption,camouflaging surfaces,anticounterfeiting,etc.Importantly,our work explores the prospects of rapid and rewritable fabrication of periodic structures with nano-scale resolution and can serve as a guideline for further development of chalcogenide-based photonics components.展开更多
The aim of this study is to investigate the color change of different restoration thicknesses, backgrounds and resin cement colors on lithium disilicate and zirconium reinforced lithium silicate materials in vitro. In...The aim of this study is to investigate the color change of different restoration thicknesses, backgrounds and resin cement colors on lithium disilicate and zirconium reinforced lithium silicate materials in vitro. In this study, IPS emax CAD (LT C14) and Celtra Duo (LT C14) are used as full ceramic materials, and Variolink Esthetic LC (warm, neutral) used as resin cement and Tokuyama Estelite Sigma Quick (A3, A2) is used as composite materials. A total of 160 samples in the form of 40 pieces of 5 × 5 0.4 mm thick 40 pieces of 5 × 5 0.6 mm thick square discs from each of the all-ceramic materials in block form were obtained using a water jet device (DWJ1525-FA;Dardi International Corporation, Nanjing, China). Glass ceramic samples produced in 2 different thicknesses were cemented on 2 different backgrounds with 2 different resin types of cement. Color measurements of the samples before and after cementation were performed on a grey background with spectrophotometer Vita EasyShade V (Vita Zahnfabrik, Bad Sackingen, Germany) and color parameters (L*, a*, b*, ΔE) were calculated according to the CIE Lab (Commission Internationale de L’Eclairage) system. Average values for each group (ΔE) were not affected by ceramic type, material thickness, background color, resin cement color, and the interaction of these four variables (p > 0.05). When the triple interactions between the groups were examined, there were no statistically significant differences (p > 0.05). In the evaluation of pairwise interactions between two groups (material type-material thickness, material type-background color, and thickness of material-background interactions) statistically significant differences (p Implications: The material type, thickness, background and cement color used did not cause any statistically significant color change in lithium disilicate and zirconium-reinforced lithium silicate glass ceramic materials (p > 0.05).展开更多
Energy storage and conservation are receiving increased attention due to rising global energy demands.Therefore,the development of energy storage materials is crucial.Thermal energy storage(TES)systems based on phase ...Energy storage and conservation are receiving increased attention due to rising global energy demands.Therefore,the development of energy storage materials is crucial.Thermal energy storage(TES)systems based on phase change materials(PCMs)have increased in prominence over the past two decades,not only because of their outstanding heat storage capacities but also their superior thermal energy regulation capability.However,issues such as leakage and low thermal conductivity limit their applicability in a variety of settings.Carbon-based materials such as graphene and its derivatives can be utilized to surmount these obstacles.This study examines the recent advancements in graphene-based phase change composites(PCCs),where graphene-based nanostructures such as graphene,graphene oxide(GO),functionalized graphene/GO,and graphene aerogel(GA)are incorporated into PCMs to substantially enhance their shape stability and thermal conductivity that could be translated to better storage capacity,durability,and temperature response,thus boosting their attractiveness for TES systems.In addition,the applications of these graphene-based PCCs in various TES disciplines,such as energy conservation in buildings,solar utilization,and battery thermal management,are discussed and summarized.展开更多
Colored rice is a type of high-quality,high-added-value rice that has attracted increasing attention in recent years.The use of large amounts of inorganic nitrogen fertilizer in rice fields results in low fertilizer u...Colored rice is a type of high-quality,high-added-value rice that has attracted increasing attention in recent years.The use of large amounts of inorganic nitrogen fertilizer in rice fields results in low fertilizer use efficiency and high environmental pollution.Organic fertilizer is a promising way to improve soil quality and sustain high yields.However,most studies focus on the effect of animal-based organic fertilizers.The effects of different ratios of plantbased organic fertilizer and inorganic fertilizer on the grain yield and quality of colored rice have rarely been reported.Therefore,a two-year field experiment was conducted in 2020 and 2021 to study the effects of replacing inorganic N fertilizers with plant-based organic fertilizers on the yield,nitrogen use efficiency(NUE),and anthocyanin content of two colored rice varieties in a tropical region in China.The experimental treatments included no nitrogen fertilization(T1),100% inorganic nitrogen fertilizer(T2),30%inorganic nitrogen fertilizer substitution with plant-based organic fertilizer(T3),60%inorganic nitrogen fertilizer substitution with plant-based organic fertilizer(T4),and 100% plantbased organic fertilizer(T5).The total nitrogen provided to all the treatments except T1 was the same at 120 kg ha-1.Our results showed that the T3 treatment enhanced the grain yield and anthocyanin content of colored rice by increasing nitrogen use efficiency compared with T2.On average,grain yields were increased by 9 and 8%,while the anthocyanin content increased by 16 and 10% in the two colored rice varieties under T3 across the two years,respectively,as compared with T2.Further study of the residual effect of partial substitution of inorganic fertilizers showed that the substitution of inorganic fertilizer with plant-based organic fertilizer improved the soil physiochemical properties,and thus increased the rice grain yield,in the subsequent seasons.The highest grain yield of the subsequent rice crop was observed under the T5 treatment.Our results suggested that the application of plantbased organic fertilizers can sustain the production of colored rice with high anthocyanin content in tropical regions,which is beneficial in reconciling the relationship between rice production and environmental protection.展开更多
Agricultural flash droughts are high-impact phenomena, characterized by rapid soil moisture dry down. The ensuing dry conditions can persist for weeks to months, with detrimental effects on natural ecosystems and crop...Agricultural flash droughts are high-impact phenomena, characterized by rapid soil moisture dry down. The ensuing dry conditions can persist for weeks to months, with detrimental effects on natural ecosystems and crop cultivation. Increases in the frequency of these rare events in a future warmer climate would have significant societal impact. This study uses an ensemble of 10 Coupled Model Intercomparison Project(CMIP) models to investigate the projected change in agricultural flash drought during the 21st century. Comparison across geographical regions and climatic zones indicates that individual events are preceded by anomalously low relative humidity and precipitation, with long-term trends governed by changes in temperature, relative humidity, and soil moisture. As a result of these processes, the frequency of both upperlevel and root-zone flash drought is projected to more than double in the mid-and high latitudes over the 21st century, with hot spots developing in the temperate regions of Europe, and humid regions of South America, Europe, and southern Africa.展开更多
The juvenile-to-adult phase change with first flowering as the indicator plays a crucial role in the lifecycle of fruit trees. However, the molecular mechanisms underlying phase change in fruit trees remain largely un...The juvenile-to-adult phase change with first flowering as the indicator plays a crucial role in the lifecycle of fruit trees. However, the molecular mechanisms underlying phase change in fruit trees remain largely unknown. Shikimic acid (ShA) pathway is a main metabolic pathway closely related to the synthesis of hormones and many important secondary metabolites participating in plant phase change. So,whether ShA regulates phase change in plants is worth clarifying. Here, the distinct morphological characteristics and the underlying mechanisms of phase change in jujube (Ziziphus jujuba Mill.), an important fruit tree native to China with nutritious fruit and outstanding tolerance abiotic stresses, were clarified. A combined transcriptome and metabolome analysis found that ShA is positively involved in jujube(Yuhong’×Xing 16’) phase change. The genes in the upstream of ShA synthesis pathway (ZjDAHPS, ZjDHQS and ZjSDH), the contents of ShA and the downstream secondary metabolites like phenols were significantly upregulated in the phase change period. Further, the treatment of spraying exogenous ShA verified that ShA at a very low concentration (60 mg·L^(-1)) can substantially speed up the phase change and flowering of jujube and other tested plants including Arabidopsis, tomato and wheat. The exogenous ShA (60 mg·L^(-1)) treatment in jujube seedlings could increase the accumulation of endogenous ShA, enhance leaf photosynthesis and the synthesis of phenols especially flavonoids and phenolic acids, and promote the expression of genes (ZjCOs, ZjNFYs and ZjPHYs) involved in flowering pathway. Basing on above results, we put forward a propose for the underlying mechanism of ShA regulating phase change, and a hypothesis that ShA could be considered a phytohormone-like substance because it is endogenous, ubiquitous, movable and highly efficient at very low concentrations. This study highlights the critical role of ShA in plant phase change and its phytohormone-like properties.展开更多
The impact of cyclodextrins(CDs)on wine quality and stability remains largely unknown.This study systematically assessed the protective effect of the post-fermentation addition of CDs on color stability of red wine fr...The impact of cyclodextrins(CDs)on wine quality and stability remains largely unknown.This study systematically assessed the protective effect of the post-fermentation addition of CDs on color stability of red wine from the viewpoints of color characteristics,copigmentation and phenolic profiles.The grey relational analysis(GRA)and principal component analysis(PCA)methods were employed to dissect the key effective determinants related to color quality.The addition of CDs induced a significant hyperchromic effect of 8.19-25.40%,a significant bathochromic effect and an enhancement of the color intensity.Furthermore,the evolution of anthocyanin forms and the content of monomeric anthocyanins revealed that β-CD is a superior favorable cofactor during wine aging,but for long-term aging,2-HP-β-CD and 2-HP-γ-CD are more beneficial in promoting the formation of polymerized anthocyanins and color stability.This work provides an important reference for the use of CDs to enhance the color quality and stability of red wines.展开更多
Extreme snowfall events over the Tibetan Plateau(TP)cause considerable damage to local society and natural ecosystems.In this study,the authors investigate the projected changes in such events over the TP and its surr...Extreme snowfall events over the Tibetan Plateau(TP)cause considerable damage to local society and natural ecosystems.In this study,the authors investigate the projected changes in such events over the TP and its surrounding areas based on an ensemble of a set of 21st century climate change projections using a regional climate model,RegCM4.The model is driven by five CMIP5 global climate models at a grid spacing of 25 km,under the RCP4.5 and RCP8.5 pathways.Four modified ETCCDI extreme indices-namely,SNOWTOT,S1mm,S10mm,and Sx5day-are employed to characterize the extreme snowfall events.RegCM4 generally reproduces the spatial distribution of the indices over the region,although with a tendency of overestimation.For the projected changes,a general decrease in SNOWTOT is found over most of the TP,with greater magnitude and better cross-simulation agreement over the eastern part.All the simulations project an overall decrease in S1mm,ranging from a 25%decrease in the west and to a 50%decrease in the east of the TP.Both S10mm and Sx5day are projected to decrease over the eastern part and increase over the central and western parts of the TP.Notably,S10mm shows a marked increase(more than double)with high cross-simulation agreement over the central TP.Significant increases in all four indices are found over the Tarim and Qaidam basins,and northwestern China north of the TP.The projected changes show topographic dependence over the TP in the latitudinal direction,and tend to decrease/increase in low-/high-altitude areas.展开更多
The Yellow River Basin(YRB)has experienced severe floods and continuous riverbed elevation throughout history.Global climate change has been suggested to be driving a worldwide increase in flooding risk.However,owing ...The Yellow River Basin(YRB)has experienced severe floods and continuous riverbed elevation throughout history.Global climate change has been suggested to be driving a worldwide increase in flooding risk.However,owing to insufficient evidence,the quantitative correlation between flooding and climate change remains illdefined.We present a long time series of maximum flood discharge in the YRB dating back to 1843 compiled from historical documents and instrument measurements.Variations in yearly maximum flood discharge show distinct periods:a dramatic decreasing period from 1843 to 1950,and an oscillating gentle decreasing from 1950 to 2021,with the latter period also showing increasing more extreme floods.A Mann-Kendall test analysis suggests that the latter period can be further split into two distinct sub-periods:an oscillating gentle decreasing period from 1950 to 2000,and a clear recent increasing period from 2000 to 2021.We further predict that climate change will cause an ongoing remarkable increase in future flooding risk and an∼44.4 billion US dollars loss of floods in the YRB in 2100.展开更多
The severe dependence of traditional phase change materials(PCMs)on the temperature-response and lattice deficiencies in versatility cannot satisfy demand for using such materials in complex application scenarios.Here...The severe dependence of traditional phase change materials(PCMs)on the temperature-response and lattice deficiencies in versatility cannot satisfy demand for using such materials in complex application scenarios.Here,we introduced metal ions to induce the self-assembly of MXene nanosheets and achieve their ordered arrangement by combining suction filtration and rapid freezing.Subsequently,a series of MXene/K^(+)/paraffin wax(PW)phase change composites(PCCs)were obtained via vacuum impregnation in molten PW.The prepared MXene-based PCCs showed versatile applications from macroscale technologies,successfully transforming solar,electric,and magnetic energy into thermal energy stored as latent heat in the PCCs.Moreover,due to the absence of binder in the MXene-based aerogel,MK3@PW exhibits a prime solar-thermal conversion efficiency(98.4%).Notably,MK3@PW can further convert the collected heat energy into electric energy through thermoelectric equipment and realize favorable solar-thermal-electric conversion(producing 206 mV of voltage with light radiation intensity of 200 mw cm^(−2)).An excellent Joule heat performance(reaching 105℃with an input voltage of 2.5 V)and responsive magnetic-thermal conversion behavior(a charging time of 11.8 s can achieve a thermal insulation effect of 285 s)for contactless thermotherapy were also demonstrated by the MK3@PW.Specifically,as a result of the ordered arrangement of MXene nanosheet self-assembly induced by potassium ions,MK3@PW PCC exhibits a higher electromagnetic shielding efficiency value(57.7 dB)than pure MXene aerogel/PW PCC(29.8 dB)with the same MXene mass.This work presents an opportunity for the multi-scene response and practical application of PCMs that satisfy demand of next-generation multifunctional PCCs.展开更多
AIM:To develop an artificial intelligence(AI)diagnosis model based on deep learning(DL)algorithm to diagnose different types of retinal vein occlusion(RVO)by recognizing color fundus photographs(CFPs).METHODS:Totally ...AIM:To develop an artificial intelligence(AI)diagnosis model based on deep learning(DL)algorithm to diagnose different types of retinal vein occlusion(RVO)by recognizing color fundus photographs(CFPs).METHODS:Totally 914 CFPs of healthy people and patients with RVO were collected as experimental data sets,and used to train,verify and test the diagnostic model of RVO.All the images were divided into four categories[normal,central retinal vein occlusion(CRVO),branch retinal vein occlusion(BRVO),and macular retinal vein occlusion(MRVO)]by three fundus disease experts.Swin Transformer was used to build the RVO diagnosis model,and different types of RVO diagnosis experiments were conducted.The model’s performance was compared to that of the experts.RESULTS:The accuracy of the model in the diagnosis of normal,CRVO,BRVO,and MRVO reached 1.000,0.978,0.957,and 0.978;the specificity reached 1.000,0.986,0.982,and 0.976;the sensitivity reached 1.000,0.955,0.917,and 1.000;the F1-Sore reached 1.000,0.9550.943,and 0.887 respectively.In addition,the area under curve of normal,CRVO,BRVO,and MRVO diagnosed by the diagnostic model were 1.000,0.900,0.959 and 0.970,respectively.The diagnostic results were highly consistent with those of fundus disease experts,and the diagnostic performance was superior.CONCLUSION:The diagnostic model developed in this study can well diagnose different types of RVO,effectively relieve the work pressure of clinicians,and provide help for the follow-up clinical diagnosis and treatment of RVO patients.展开更多
BACKGROUND The comprehension and utilization of timing theory and behavior change can offer a more extensive and individualized provision of support and treatment alternatives for primipara.This has the potential to e...BACKGROUND The comprehension and utilization of timing theory and behavior change can offer a more extensive and individualized provision of support and treatment alternatives for primipara.This has the potential to enhance the psychological well-being and overall quality of life for primipara,while also furnishing healthcare providers with efficacious interventions to tackle the psychological and physiological obstacles encountered during the stages of pregnancy and postpartum.AIM To explore the effect of timing theory combined with behavior change on selfefficacy,negative emotions and quality of life in patients with primipara.METHODS A total of 80 primipara cases were selected and admitted to our hospital between August 2020 and May 2022.These cases were divided into two groups,namely the observation group and the control group,with 40 cases in each group.The nursing interventions differed between the two groups,with the control group receiving routine nursing and the observation group receiving integrated nursing based on the timing theory and behavior change.The study aimed to compare the pre-and post-nursing scores of Chinese Perceived Stress Scale(CPSS),Edinburgh Postpartum Depression Scale(EPDS),Self-rating Anxiety Scale(SAS),breast milk knowledge,self-efficacy,and SF-36 quality of life in both groups.RESULTS After nursing,the CPSS,EPDS,and SAS scores of the two groups was significantly lower than that before nursing,and the CPSS,EPDS,and SAS scores of the observation group was significantly lower than that of the control group(P=0.002,P=0.011,and P=0.001 respectively).After nursing,the breastfeeding knowledge mastery,selfefficacy,and SF-36 quality of life scores was significantly higher than that before nursing,and the breastfeeding knowledge mastery(P=0.013),self-efficacy(P=0.008),and SF-36 quality of life(P=0.011)scores of the observation group was significantly higher than that of the control group.CONCLUSION The integration of timing theory and behavior change integrated theory has been found to be an effective approach in alleviating negative mood and stress experienced by primipara individuals,while also enhancing their selfefficacy and overall quality of life.This study focuses on the key concepts of timing theory,behavior change,primipara individuals,negative mood,and quality of life.展开更多
The alpine meadow ecosystem accounts for 27%of the total area of the Tibetan Plateau and is also one of the most important vegetation types.The Dangxiong alpine meadow ecosystem,located in the south-central part of th...The alpine meadow ecosystem accounts for 27%of the total area of the Tibetan Plateau and is also one of the most important vegetation types.The Dangxiong alpine meadow ecosystem,located in the south-central part of the Tibetan Plateau,is a typical example.To understand the carbon and water fluxes,water use efficiency(WUE),and their responses to future climate change for the alpine meadow ecosystem in the Dangxiong area,two parameter estimation methods,the Model-independent Parameter Estimation(PEST)and the Dynamic Dimensions Search(DDS),were used to optimize the Biome-BGC model.Then,the gross primary productivity(GPP)and evapotranspiration(ET)were simulated.The results show that the DDS parameter calibration method has a better performance.The annual GPP and ET show an increasing trend,while the WUE shows a decreasing trend.Meanwhile,ET and GPP reach their peaks in July and August,respectively,and WUE shows a“dual-peak”pattern,reaching peaks in May and November.Furthermore,according to the simulation results for the next nearly 100 years,the ensemble average GPP and ET exhibit a significant increasing trend,and the growth rate under the SSP5–8.5 scenario is greater than that under the SSP2–4.5 scenario.WUE shows an increasing trend under the SSP2–4.5 scenario and a significant increasing trend under the SSP5–8.5 scenario.This study has important scientific significance for carbon and water cycle prediction and vegetation ecological protection on the Tibetan Plateau.展开更多
Developing technologies that can be applied simultaneously in battery thermal management(BTM)and thermal runaway(TR)mitigation is significant to improving the safety of lithium-ion battery systems.Inorganic phase chan...Developing technologies that can be applied simultaneously in battery thermal management(BTM)and thermal runaway(TR)mitigation is significant to improving the safety of lithium-ion battery systems.Inorganic phase change material(PCM)with nonflammability has the potential to achieve this dual function.This study proposed an encapsulated inorganic phase change material(EPCM)with a heat transfer enhancement for battery systems,where Na_(2)HPO_(4)·12H_(2)O was used as the core PCM encapsulated by silica and the additive of carbon nanotube(CNT)was applied to enhance the thermal conductivity.The microstructure and thermal properties of the EPCM/CNT were analyzed by a series of characterization tests.Two different incorporating methods of CNT were compared and the proper CNT adding amount was also studied.After preparation,the battery thermal management performance and TR propagation mitigation effects of EPCM/CNT were further investigated on the battery modules.The experimental results of thermal management tests showed that EPCM/CNT not only slowed down the temperature rising of the module but also improved the temperature uniformity during normal operation.The peak battery temperature decreased from 76℃to 61.2℃at 2 C discharge rate and the temperature difference was controlled below 3℃.Moreover,the results of TR propagation tests demonstrated that nonflammable EPCM/CNT with good heat absorption could work as a TR barrier,which exhibited effective mitigation on TR and TR propagation.The trigger time of three cells was successfully delayed by 129,474 and 551 s,respectively and the propagation intervals were greatly extended as well.展开更多
A copper-red and silver-white metallic glaze of R_(2)O-RO-Al_(2)O_(3)-SiO_(2)-P_(2)O_(5)system was synthesized by adjusting the firing temperature and glaze components.The coloration mechanism of the metallic glaze wa...A copper-red and silver-white metallic glaze of R_(2)O-RO-Al_(2)O_(3)-SiO_(2)-P_(2)O_(5)system was synthesized by adjusting the firing temperature and glaze components.The coloration mechanism of the metallic glaze was revealed via investigation of the microstructure of the glaze.Our research reveals that the metallic glaze with different colors is mainly due to the amount of Fe_(2)O_(3).The metallic glaze shows a silver-white luster due to a structural color ofα-Fe_(2)O_(3)crystals with a good orientation when the sample contains 0.0939 mol of Fe_(2)O_(3),maintaining temperatures at 1150℃for 0.5 h.The metallic glaze is copper-red which is dominated by the coupling of chemical and structural color ofα-Fe_(2)O_(3)crystals when the sample contains 0.0783 mol of Fe_(2)O_(3).After testing the amount of SiO_(2),we find that 4.0499 mol is the optimal amount to form the ceramic network,and 0.27 mol AlPO_(4)is the best amount to promote phase separation.展开更多
基金supported in part by Beijing Natural Science Foundation Grant No.Z220006in part by the National Natural Science Foundation of China under Grant No.62304087。
文摘All-dielectric metasurface, which features low optical absorptance and high resolution, is becoming a promising candidate for full-color generation. However, the optical response of current metamaterials is fixed and lacks active tuning. In this work, we demonstrate a reconfigurable and polarization-dependent active color generation technique by incorporating low-loss phase change materials(PCMs) and CaF_2 all-dielectric substrate. Based on the strong Mie resonance effect and low optical absorption structure, a transflective, full-color with high color purity and gamut value is achieved. The spectrum can be dynamically manipulated by changing either the polarization of incident light or the PCM state. High transmittance and reflectance can be simultaneously achieved by using low-loss PCMs and substrate. The novel active metasurfaces can bring new inspiration in the areas of optical encryption, anti-counterfeiting, and display technologies.
文摘Few studies have examined the impacts of color stimuli on perioperative mood and quality of recovery;thus, this randomized controlled trial aimed to assess impacts of vividly colored accessories on mood and quality of recovery after breast surgery. This single-center, single-blind randomized controlled trial included 36 participants (all aged ≥ 20 years) who were randomized into intervention (n = 19) and control groups (n = 17). The intervention group received vividly colored accessories. The primary and secondary study outcomes were patient mood, evaluated using a two-dimensional mood scale, and postoperative recovery, evaluated using Quality of Recovery-15, which were assessed on postoperative day 3. There were no statistical intergroup differences in the scores of the Two-Dimensional Mood Scale (11.2 [intervention group] vs. 10.4 [control group], P = 0.75) and Quality of Recovery-15 (126.8 [intervention group] vs. 129.3 [control group], P = 0.73). Thus, the use of vividly colored accessories by patients undergoing breast surgery was not found to affect patients’ mood and quality of recovery.
文摘Under the current context of climate change, supplementary irrigation may be needed for crop production resilience. We determined the effects of supplementary irrigation on sorghum grain yield in the dry Savannah region of Togo. A two-year trial was conducted in a controlled environment at AREJ, an agro-ecological center in Cinkassé. The plant material was sorghum variety Sorvato 28. The experimental design was a Completely Randomized Block with three replications and three treatments as follows: T0 control plot (rainfed conditions);T1 (supplementary irrigation from flowering to grain filling stage) and T2 (supplementary irrigation from planting to grain filling stage). Two irrigation techniques (furrow and Californian system) were used under each watering treatment. The results showed that irrigation technique significantly affected panicle length with no effect on 1000 grains mass. Panicle length and grain yields varied from 15.59 to 25.71 cm and 0.0 to 2.06 t∙h−1, respectively, with the highest values (25.66 cm and 2.06 t∙h−1, respectively) under the T2 treatment with the California system-based supplementary irrigation. The comparison of results obtained on treatment T0 and T2, shows that supplementary irrigation increased the yields by at least 68.62%. Supplementary irrigation during sowing and growing season (T2) improved sorghum yields in the dry savannahs of Togo, with a better performance of the California irrigation system.
基金supported by the Central PublicInterest Scientific Institution Basal Research Fund (Grant No. CAFYBB2020QB001)the National Natural Science Foundation of China (Grant No. 31800571)。
文摘Yellowhorn(Xanthoceras sorbifolium), especially its varieties, is the red petal yellowhorn(X. sorbifolium var. purpurea), an important tree species with great ornamental value, and its flower petals change color throughout the flowering period. In this study, we mainly focused on the mechanism of the petal color change with transcriptomics and metabolomics data. A phased chromosome-scale assembly of the red petal yellowhorn genome was generated using the PacBio high-fidelity reads, Illumina short reads, and Phase genomics Proximo Hi-C data. The final de novo assembly yielded 533.67 Mb with a contig N50 of 5.42 Mb, and 27 501 protein-coding genes were predicted. Notably, an alternate haplotig assembly was also obtained. Furthermore, a variation database for the alleles within the genome was constructed. Subsequently, the expression pattern of flower pigmentation-related genes and allelic expression imbalance events were investigated. Apart from 6 genes involved in the anthocyanin biosynthesis pathway regulated by the activation of 15 MYB-bHLH-WD40s, the increased expression of senescencerelated gene 1(SRG1) and 2-oxoglutarate-dependent dioxygenase(DIOX5) might also result in decreasing content of lutein and increasing abundance of(E/Z)-phytoene, cyanidin-3-O-rutinoside, and cyanidin-3-O-sambubioside. These changes in genes and metabolites were most likely related to the petal color change in red petal yellowhorn. This phased chromosome-scale genome assembly provides more accurate genomic information for future molecular breeding and facilitates allele function studies of the red petal yellowhorn.
基金supported by the National Natural Science Foundation of China (32172972,U19A2040)Science and Technology Innovation Program of Hunan Province (2021RC4028)+4 种基金Earmarked Fund for China Agriculture Research System (CARS-45)Hunan Provincial Science and Technology Department (2019RS5001)Special Funds for Construction of Innovative Provinces in Hunan Province (2021NK1010)Special Science Found of Nansha-South China Agricultural University Fishery Research Institute,Guangzhou (NSYYKY202305,NSYYKY202306)Aid Program for Science and Technology Innovative Research Team in Higher Educational Institutions of Hunan Province。
文摘The autotetraploid Carassius auratus(4nRR,4n=200,RRRR)is derived from whole-genome duplication of Carassius auratus red var.(RCC,2n=100,RR).In the current study,we demonstrated that chromatophores and pigment changes directly caused the coloration and variation of 4nRR skin(red in RCC,brownish-yellow in4nRR).To further explore the molecular mechanisms underlying coloration formation and variation in 4nRR,we performed transcriptome profiling and molecular functional verification in RCC and 4nRR.Results revealed that scarb1,associated with carotenoid metabolism,underwent significant down-regulation in 4nRR.Efficient editing of this candidate pigment gene provided clear evidence of its significant role in RCC coloration.Subsequently,we identified four divergent scarb1 homeologs in 4nRR:two original scarb1 homeologs from RCC and two duplicated ones.Notably,three of these homeologs possessed two highly conserved alleles,exhibiting biased and allelespecific expression in the skin.Remarkably,after precise editing of both the original and duplicated scarb1homeologs and/or alleles,4nRR individuals,whether singly or multiply mutated,displayed a transition from brownishyellow skin to a cyan-gray phenotype.Concurrently,the proportional areas of the cyan-gray regions displayed a gene-dose correlation.These findings illustrate the subfunctionalization of duplicated scarb1,with all scarb1genes synergistically and equally contributing to the pigmentation of 4nRR.This is the first report concerning the functional differentiation of duplicated homeologs in an autopolyploidfish,substantiallyenrichingour understanding of coloration formation and change within this group of organisms.
基金support from the National Key Research and Development Program of China (2020YFA0714504,2019YFA0709100).
文摘High-resolution multi-color printing relies upon pixelated optical nanostructures,which is crucial to promote color display by producing nonbleaching colors,yet requires simplicity in fabrication and dynamic switching.Antimony trisulfide(Sb_(2)S_(3))is a newly rising chalcogenide material that possesses prompt and significant transition of its optical characteristics in the visible region between amorphous and crystalline phases,which holds the key to color-varying devices.Herein,we proposed a dynamically switchable color printing method using Sb_(2)S_(3)-based stepwise pixelated Fabry-Pérot(FP)cavities with various cavity lengths.The device was fabricated by employing a direct laser patterning that is a less timeconsuming,more approachable,and low-cost technique.As switching the state of Sb_(2)S_(3) between amorphous and crystalline,the multi-color of stepwise pixelated FP cavities can be actively changed.The color variation is due to the profound change in the refractive index of Sb_(2)S_(3) over the visible spectrum during its phase transition.Moreover,we directly fabricated sub-50 nm nano-grating on ultrathin Sb_(2)S_(3) laminate via microsphere 800-nm femtosecond laser irradiation in far field.The minimum feature size can be further decreased down to~45 nm(λ/17)by varying the thickness of Sb_(2)S_(3) film.Ultrafast switchable Sb_(2)S_(3) photonic devices can take one step toward the next generation of inkless erasable papers or displays and enable information encryption,camouflaging surfaces,anticounterfeiting,etc.Importantly,our work explores the prospects of rapid and rewritable fabrication of periodic structures with nano-scale resolution and can serve as a guideline for further development of chalcogenide-based photonics components.
文摘The aim of this study is to investigate the color change of different restoration thicknesses, backgrounds and resin cement colors on lithium disilicate and zirconium reinforced lithium silicate materials in vitro. In this study, IPS emax CAD (LT C14) and Celtra Duo (LT C14) are used as full ceramic materials, and Variolink Esthetic LC (warm, neutral) used as resin cement and Tokuyama Estelite Sigma Quick (A3, A2) is used as composite materials. A total of 160 samples in the form of 40 pieces of 5 × 5 0.4 mm thick 40 pieces of 5 × 5 0.6 mm thick square discs from each of the all-ceramic materials in block form were obtained using a water jet device (DWJ1525-FA;Dardi International Corporation, Nanjing, China). Glass ceramic samples produced in 2 different thicknesses were cemented on 2 different backgrounds with 2 different resin types of cement. Color measurements of the samples before and after cementation were performed on a grey background with spectrophotometer Vita EasyShade V (Vita Zahnfabrik, Bad Sackingen, Germany) and color parameters (L*, a*, b*, ΔE) were calculated according to the CIE Lab (Commission Internationale de L’Eclairage) system. Average values for each group (ΔE) were not affected by ceramic type, material thickness, background color, resin cement color, and the interaction of these four variables (p > 0.05). When the triple interactions between the groups were examined, there were no statistically significant differences (p > 0.05). In the evaluation of pairwise interactions between two groups (material type-material thickness, material type-background color, and thickness of material-background interactions) statistically significant differences (p Implications: The material type, thickness, background and cement color used did not cause any statistically significant color change in lithium disilicate and zirconium-reinforced lithium silicate glass ceramic materials (p > 0.05).
基金the support from Grant No.2022VBA0023 funded by the Chinese Academy of Sciences President's International Fellowship Initiative.
文摘Energy storage and conservation are receiving increased attention due to rising global energy demands.Therefore,the development of energy storage materials is crucial.Thermal energy storage(TES)systems based on phase change materials(PCMs)have increased in prominence over the past two decades,not only because of their outstanding heat storage capacities but also their superior thermal energy regulation capability.However,issues such as leakage and low thermal conductivity limit their applicability in a variety of settings.Carbon-based materials such as graphene and its derivatives can be utilized to surmount these obstacles.This study examines the recent advancements in graphene-based phase change composites(PCCs),where graphene-based nanostructures such as graphene,graphene oxide(GO),functionalized graphene/GO,and graphene aerogel(GA)are incorporated into PCMs to substantially enhance their shape stability and thermal conductivity that could be translated to better storage capacity,durability,and temperature response,thus boosting their attractiveness for TES systems.In addition,the applications of these graphene-based PCCs in various TES disciplines,such as energy conservation in buildings,solar utilization,and battery thermal management,are discussed and summarized.
基金supported by the National Natural Science Foundation of China(32060430 and 31971840)the Research Initiation Fund of Hainan University,China(KYQD(ZR)19104)。
文摘Colored rice is a type of high-quality,high-added-value rice that has attracted increasing attention in recent years.The use of large amounts of inorganic nitrogen fertilizer in rice fields results in low fertilizer use efficiency and high environmental pollution.Organic fertilizer is a promising way to improve soil quality and sustain high yields.However,most studies focus on the effect of animal-based organic fertilizers.The effects of different ratios of plantbased organic fertilizer and inorganic fertilizer on the grain yield and quality of colored rice have rarely been reported.Therefore,a two-year field experiment was conducted in 2020 and 2021 to study the effects of replacing inorganic N fertilizers with plant-based organic fertilizers on the yield,nitrogen use efficiency(NUE),and anthocyanin content of two colored rice varieties in a tropical region in China.The experimental treatments included no nitrogen fertilization(T1),100% inorganic nitrogen fertilizer(T2),30%inorganic nitrogen fertilizer substitution with plant-based organic fertilizer(T3),60%inorganic nitrogen fertilizer substitution with plant-based organic fertilizer(T4),and 100% plantbased organic fertilizer(T5).The total nitrogen provided to all the treatments except T1 was the same at 120 kg ha-1.Our results showed that the T3 treatment enhanced the grain yield and anthocyanin content of colored rice by increasing nitrogen use efficiency compared with T2.On average,grain yields were increased by 9 and 8%,while the anthocyanin content increased by 16 and 10% in the two colored rice varieties under T3 across the two years,respectively,as compared with T2.Further study of the residual effect of partial substitution of inorganic fertilizers showed that the substitution of inorganic fertilizer with plant-based organic fertilizer improved the soil physiochemical properties,and thus increased the rice grain yield,in the subsequent seasons.The highest grain yield of the subsequent rice crop was observed under the T5 treatment.Our results suggested that the application of plantbased organic fertilizers can sustain the production of colored rice with high anthocyanin content in tropical regions,which is beneficial in reconciling the relationship between rice production and environmental protection.
基金supported by the National Centre for Atmospheric Science through the NERC National Capability International Programmes Award (NE/ X006263/1)the Global Challenges Research Fund, via Atmospheric hazard in developing Countries: Risk assessment and Early Warning (ACREW) (NE/R000034/1)the Natural Environmental Research Council and the Department for Foreign International Development through the Sat WIN-ALERT project (NE/ R014116/1)。
文摘Agricultural flash droughts are high-impact phenomena, characterized by rapid soil moisture dry down. The ensuing dry conditions can persist for weeks to months, with detrimental effects on natural ecosystems and crop cultivation. Increases in the frequency of these rare events in a future warmer climate would have significant societal impact. This study uses an ensemble of 10 Coupled Model Intercomparison Project(CMIP) models to investigate the projected change in agricultural flash drought during the 21st century. Comparison across geographical regions and climatic zones indicates that individual events are preceded by anomalously low relative humidity and precipitation, with long-term trends governed by changes in temperature, relative humidity, and soil moisture. As a result of these processes, the frequency of both upperlevel and root-zone flash drought is projected to more than double in the mid-and high latitudes over the 21st century, with hot spots developing in the temperate regions of Europe, and humid regions of South America, Europe, and southern Africa.
基金partially supported by the National Natural Science Foundation of China (Grant No.31772285)the National Key R&D Program Project Funding (Grant No.2018YFD1000607)Foundation for 100 Innovative Talents of Hebei Province(Grant No.SLRC2019031)。
文摘The juvenile-to-adult phase change with first flowering as the indicator plays a crucial role in the lifecycle of fruit trees. However, the molecular mechanisms underlying phase change in fruit trees remain largely unknown. Shikimic acid (ShA) pathway is a main metabolic pathway closely related to the synthesis of hormones and many important secondary metabolites participating in plant phase change. So,whether ShA regulates phase change in plants is worth clarifying. Here, the distinct morphological characteristics and the underlying mechanisms of phase change in jujube (Ziziphus jujuba Mill.), an important fruit tree native to China with nutritious fruit and outstanding tolerance abiotic stresses, were clarified. A combined transcriptome and metabolome analysis found that ShA is positively involved in jujube(Yuhong’×Xing 16’) phase change. The genes in the upstream of ShA synthesis pathway (ZjDAHPS, ZjDHQS and ZjSDH), the contents of ShA and the downstream secondary metabolites like phenols were significantly upregulated in the phase change period. Further, the treatment of spraying exogenous ShA verified that ShA at a very low concentration (60 mg·L^(-1)) can substantially speed up the phase change and flowering of jujube and other tested plants including Arabidopsis, tomato and wheat. The exogenous ShA (60 mg·L^(-1)) treatment in jujube seedlings could increase the accumulation of endogenous ShA, enhance leaf photosynthesis and the synthesis of phenols especially flavonoids and phenolic acids, and promote the expression of genes (ZjCOs, ZjNFYs and ZjPHYs) involved in flowering pathway. Basing on above results, we put forward a propose for the underlying mechanism of ShA regulating phase change, and a hypothesis that ShA could be considered a phytohormone-like substance because it is endogenous, ubiquitous, movable and highly efficient at very low concentrations. This study highlights the critical role of ShA in plant phase change and its phytohormone-like properties.
基金supported by the Regional Collaborative Innovation Project in Xinjiang Autonomous Region of China(2022E02011)the National Key R&D Program of China(2019YFD1002500)the Key Project of Research and Development Plan in Ningxia Hui Autonomous Region of China(2018BBF02001)。
文摘The impact of cyclodextrins(CDs)on wine quality and stability remains largely unknown.This study systematically assessed the protective effect of the post-fermentation addition of CDs on color stability of red wine from the viewpoints of color characteristics,copigmentation and phenolic profiles.The grey relational analysis(GRA)and principal component analysis(PCA)methods were employed to dissect the key effective determinants related to color quality.The addition of CDs induced a significant hyperchromic effect of 8.19-25.40%,a significant bathochromic effect and an enhancement of the color intensity.Furthermore,the evolution of anthocyanin forms and the content of monomeric anthocyanins revealed that β-CD is a superior favorable cofactor during wine aging,but for long-term aging,2-HP-β-CD and 2-HP-γ-CD are more beneficial in promoting the formation of polymerized anthocyanins and color stability.This work provides an important reference for the use of CDs to enhance the color quality and stability of red wines.
基金supported by the Strategic Priority Research Program of the Chinese Academy of Sciences[grant number XDA2006040102]the National Natural Science Foundation of China[grant number 42175037].
文摘Extreme snowfall events over the Tibetan Plateau(TP)cause considerable damage to local society and natural ecosystems.In this study,the authors investigate the projected changes in such events over the TP and its surrounding areas based on an ensemble of a set of 21st century climate change projections using a regional climate model,RegCM4.The model is driven by five CMIP5 global climate models at a grid spacing of 25 km,under the RCP4.5 and RCP8.5 pathways.Four modified ETCCDI extreme indices-namely,SNOWTOT,S1mm,S10mm,and Sx5day-are employed to characterize the extreme snowfall events.RegCM4 generally reproduces the spatial distribution of the indices over the region,although with a tendency of overestimation.For the projected changes,a general decrease in SNOWTOT is found over most of the TP,with greater magnitude and better cross-simulation agreement over the eastern part.All the simulations project an overall decrease in S1mm,ranging from a 25%decrease in the west and to a 50%decrease in the east of the TP.Both S10mm and Sx5day are projected to decrease over the eastern part and increase over the central and western parts of the TP.Notably,S10mm shows a marked increase(more than double)with high cross-simulation agreement over the central TP.Significant increases in all four indices are found over the Tarim and Qaidam basins,and northwestern China north of the TP.The projected changes show topographic dependence over the TP in the latitudinal direction,and tend to decrease/increase in low-/high-altitude areas.
基金the National Natural Science Foundation of China(Grants No.42041006,41790443 and 41927806).
文摘The Yellow River Basin(YRB)has experienced severe floods and continuous riverbed elevation throughout history.Global climate change has been suggested to be driving a worldwide increase in flooding risk.However,owing to insufficient evidence,the quantitative correlation between flooding and climate change remains illdefined.We present a long time series of maximum flood discharge in the YRB dating back to 1843 compiled from historical documents and instrument measurements.Variations in yearly maximum flood discharge show distinct periods:a dramatic decreasing period from 1843 to 1950,and an oscillating gentle decreasing from 1950 to 2021,with the latter period also showing increasing more extreme floods.A Mann-Kendall test analysis suggests that the latter period can be further split into two distinct sub-periods:an oscillating gentle decreasing period from 1950 to 2000,and a clear recent increasing period from 2000 to 2021.We further predict that climate change will cause an ongoing remarkable increase in future flooding risk and an∼44.4 billion US dollars loss of floods in the YRB in 2100.
基金the National Natural Science Foundation of China[grant numbers 52203038,52173036 and 52073107]the National Key Technology R&D Program of China[grant number 2022YFC3901904,2022YFC3901903,and 2020YFB1709301]the Central University Basic Research Fund of China[grant number 2021XXJS035].
文摘The severe dependence of traditional phase change materials(PCMs)on the temperature-response and lattice deficiencies in versatility cannot satisfy demand for using such materials in complex application scenarios.Here,we introduced metal ions to induce the self-assembly of MXene nanosheets and achieve their ordered arrangement by combining suction filtration and rapid freezing.Subsequently,a series of MXene/K^(+)/paraffin wax(PW)phase change composites(PCCs)were obtained via vacuum impregnation in molten PW.The prepared MXene-based PCCs showed versatile applications from macroscale technologies,successfully transforming solar,electric,and magnetic energy into thermal energy stored as latent heat in the PCCs.Moreover,due to the absence of binder in the MXene-based aerogel,MK3@PW exhibits a prime solar-thermal conversion efficiency(98.4%).Notably,MK3@PW can further convert the collected heat energy into electric energy through thermoelectric equipment and realize favorable solar-thermal-electric conversion(producing 206 mV of voltage with light radiation intensity of 200 mw cm^(−2)).An excellent Joule heat performance(reaching 105℃with an input voltage of 2.5 V)and responsive magnetic-thermal conversion behavior(a charging time of 11.8 s can achieve a thermal insulation effect of 285 s)for contactless thermotherapy were also demonstrated by the MK3@PW.Specifically,as a result of the ordered arrangement of MXene nanosheet self-assembly induced by potassium ions,MK3@PW PCC exhibits a higher electromagnetic shielding efficiency value(57.7 dB)than pure MXene aerogel/PW PCC(29.8 dB)with the same MXene mass.This work presents an opportunity for the multi-scene response and practical application of PCMs that satisfy demand of next-generation multifunctional PCCs.
基金Supported by Shenzhen Fund for Guangdong Provincial High-level Clinical Key Specialties(No.SZGSP014)Sanming Project of Medicine in Shenzhen(No.SZSM202011015)Shenzhen Science and Technology Planning Project(No.KCXFZ20211020163813019).
文摘AIM:To develop an artificial intelligence(AI)diagnosis model based on deep learning(DL)algorithm to diagnose different types of retinal vein occlusion(RVO)by recognizing color fundus photographs(CFPs).METHODS:Totally 914 CFPs of healthy people and patients with RVO were collected as experimental data sets,and used to train,verify and test the diagnostic model of RVO.All the images were divided into four categories[normal,central retinal vein occlusion(CRVO),branch retinal vein occlusion(BRVO),and macular retinal vein occlusion(MRVO)]by three fundus disease experts.Swin Transformer was used to build the RVO diagnosis model,and different types of RVO diagnosis experiments were conducted.The model’s performance was compared to that of the experts.RESULTS:The accuracy of the model in the diagnosis of normal,CRVO,BRVO,and MRVO reached 1.000,0.978,0.957,and 0.978;the specificity reached 1.000,0.986,0.982,and 0.976;the sensitivity reached 1.000,0.955,0.917,and 1.000;the F1-Sore reached 1.000,0.9550.943,and 0.887 respectively.In addition,the area under curve of normal,CRVO,BRVO,and MRVO diagnosed by the diagnostic model were 1.000,0.900,0.959 and 0.970,respectively.The diagnostic results were highly consistent with those of fundus disease experts,and the diagnostic performance was superior.CONCLUSION:The diagnostic model developed in this study can well diagnose different types of RVO,effectively relieve the work pressure of clinicians,and provide help for the follow-up clinical diagnosis and treatment of RVO patients.
文摘BACKGROUND The comprehension and utilization of timing theory and behavior change can offer a more extensive and individualized provision of support and treatment alternatives for primipara.This has the potential to enhance the psychological well-being and overall quality of life for primipara,while also furnishing healthcare providers with efficacious interventions to tackle the psychological and physiological obstacles encountered during the stages of pregnancy and postpartum.AIM To explore the effect of timing theory combined with behavior change on selfefficacy,negative emotions and quality of life in patients with primipara.METHODS A total of 80 primipara cases were selected and admitted to our hospital between August 2020 and May 2022.These cases were divided into two groups,namely the observation group and the control group,with 40 cases in each group.The nursing interventions differed between the two groups,with the control group receiving routine nursing and the observation group receiving integrated nursing based on the timing theory and behavior change.The study aimed to compare the pre-and post-nursing scores of Chinese Perceived Stress Scale(CPSS),Edinburgh Postpartum Depression Scale(EPDS),Self-rating Anxiety Scale(SAS),breast milk knowledge,self-efficacy,and SF-36 quality of life in both groups.RESULTS After nursing,the CPSS,EPDS,and SAS scores of the two groups was significantly lower than that before nursing,and the CPSS,EPDS,and SAS scores of the observation group was significantly lower than that of the control group(P=0.002,P=0.011,and P=0.001 respectively).After nursing,the breastfeeding knowledge mastery,selfefficacy,and SF-36 quality of life scores was significantly higher than that before nursing,and the breastfeeding knowledge mastery(P=0.013),self-efficacy(P=0.008),and SF-36 quality of life(P=0.011)scores of the observation group was significantly higher than that of the control group.CONCLUSION The integration of timing theory and behavior change integrated theory has been found to be an effective approach in alleviating negative mood and stress experienced by primipara individuals,while also enhancing their selfefficacy and overall quality of life.This study focuses on the key concepts of timing theory,behavior change,primipara individuals,negative mood,and quality of life.
基金supported by the Second Comprehensive Scientific Research Survey on the Tibetan Plateau[grant number 2019QZKK0103]the National Natural Science Foundation of China[grant numbers 42375071 and 42230610].
文摘The alpine meadow ecosystem accounts for 27%of the total area of the Tibetan Plateau and is also one of the most important vegetation types.The Dangxiong alpine meadow ecosystem,located in the south-central part of the Tibetan Plateau,is a typical example.To understand the carbon and water fluxes,water use efficiency(WUE),and their responses to future climate change for the alpine meadow ecosystem in the Dangxiong area,two parameter estimation methods,the Model-independent Parameter Estimation(PEST)and the Dynamic Dimensions Search(DDS),were used to optimize the Biome-BGC model.Then,the gross primary productivity(GPP)and evapotranspiration(ET)were simulated.The results show that the DDS parameter calibration method has a better performance.The annual GPP and ET show an increasing trend,while the WUE shows a decreasing trend.Meanwhile,ET and GPP reach their peaks in July and August,respectively,and WUE shows a“dual-peak”pattern,reaching peaks in May and November.Furthermore,according to the simulation results for the next nearly 100 years,the ensemble average GPP and ET exhibit a significant increasing trend,and the growth rate under the SSP5–8.5 scenario is greater than that under the SSP2–4.5 scenario.WUE shows an increasing trend under the SSP2–4.5 scenario and a significant increasing trend under the SSP5–8.5 scenario.This study has important scientific significance for carbon and water cycle prediction and vegetation ecological protection on the Tibetan Plateau.
基金financially supported by the National Key Research and Development Program(Grant No.2022YFE0207400)the National Natural Science Foundation of China(Grant No.U22A20168 and 52174225)。
文摘Developing technologies that can be applied simultaneously in battery thermal management(BTM)and thermal runaway(TR)mitigation is significant to improving the safety of lithium-ion battery systems.Inorganic phase change material(PCM)with nonflammability has the potential to achieve this dual function.This study proposed an encapsulated inorganic phase change material(EPCM)with a heat transfer enhancement for battery systems,where Na_(2)HPO_(4)·12H_(2)O was used as the core PCM encapsulated by silica and the additive of carbon nanotube(CNT)was applied to enhance the thermal conductivity.The microstructure and thermal properties of the EPCM/CNT were analyzed by a series of characterization tests.Two different incorporating methods of CNT were compared and the proper CNT adding amount was also studied.After preparation,the battery thermal management performance and TR propagation mitigation effects of EPCM/CNT were further investigated on the battery modules.The experimental results of thermal management tests showed that EPCM/CNT not only slowed down the temperature rising of the module but also improved the temperature uniformity during normal operation.The peak battery temperature decreased from 76℃to 61.2℃at 2 C discharge rate and the temperature difference was controlled below 3℃.Moreover,the results of TR propagation tests demonstrated that nonflammable EPCM/CNT with good heat absorption could work as a TR barrier,which exhibited effective mitigation on TR and TR propagation.The trigger time of three cells was successfully delayed by 129,474 and 551 s,respectively and the propagation intervals were greatly extended as well.
基金Funded by the National Natural Science Foundation of China(No.52202231)the College Students Innovation and Entrepreneurship Training Program of Hubei University of Technology(No.202310500039)。
文摘A copper-red and silver-white metallic glaze of R_(2)O-RO-Al_(2)O_(3)-SiO_(2)-P_(2)O_(5)system was synthesized by adjusting the firing temperature and glaze components.The coloration mechanism of the metallic glaze was revealed via investigation of the microstructure of the glaze.Our research reveals that the metallic glaze with different colors is mainly due to the amount of Fe_(2)O_(3).The metallic glaze shows a silver-white luster due to a structural color ofα-Fe_(2)O_(3)crystals with a good orientation when the sample contains 0.0939 mol of Fe_(2)O_(3),maintaining temperatures at 1150℃for 0.5 h.The metallic glaze is copper-red which is dominated by the coupling of chemical and structural color ofα-Fe_(2)O_(3)crystals when the sample contains 0.0783 mol of Fe_(2)O_(3).After testing the amount of SiO_(2),we find that 4.0499 mol is the optimal amount to form the ceramic network,and 0.27 mol AlPO_(4)is the best amount to promote phase separation.