The stochastic bifurcation of a generalized Duffing–van der Pol system with fractional derivative under color noise excitation is studied. Firstly, fractional derivative in a form of generalized integral with time-de...The stochastic bifurcation of a generalized Duffing–van der Pol system with fractional derivative under color noise excitation is studied. Firstly, fractional derivative in a form of generalized integral with time-delay is approximated by a set of periodic functions. Based on this work, the stochastic averaging method is applied to obtain the FPK equation and the stationary probability density of the amplitude. After that, the critical parameter conditions of stochastic P-bifurcation are obtained based on the singularity theory. Different types of stationary probability densities of the amplitude are also obtained. The study finds that the change of noise intensity, fractional order, and correlation time will lead to the stochastic bifurcation.展开更多
A single-mode laser with coupling between additive and multiplicative noise terms is investigated when the multiplicative noise and the coupling between two noise terms are colored fluctuations with finite correlation...A single-mode laser with coupling between additive and multiplicative noise terms is investigated when the multiplicative noise and the coupling between two noise terms are colored fluctuations with finite correlation times T1 and T2. Combining the unified colored noise approximation (UCNA) and the functional analysis, the stationary probability distribution (SPD) and the variance of the laser intensity is derived. It is found that the colored nature of multiplicative noise and the coupling strength between two noise terms can affect both the structure and the height of the SPD, while the colored nature of the coupling between two noise terms can only affect the height of the SPD. The multiplicative noise can enhance the intensity fluctuations while the additive noise can reduce the fluctuations in a laser system. Numerical simulations are presented and consistent to the analytical results.展开更多
A single-mode laser noise model driven by quadratic colored pump noise and biased amplitude modulationsignal is proposed.The analytic expression of signal-to-noise ratio is calculated by using a new linearized procedu...A single-mode laser noise model driven by quadratic colored pump noise and biased amplitude modulationsignal is proposed.The analytic expression of signal-to-noise ratio is calculated by using a new linearized procedure.Itis found that there are three different typies of stochastic resonance in the model:the conventional form of stochasticresonance,the stochastic resonance in the broad sense,and the bona fide SR.展开更多
Gaussian colored noise induced spatial patterns and spatial coherence resonances in a square lattice neuronal network composed of Morris-Lecar neurons are studied.Each neuron is at resting state near a saddle-node bif...Gaussian colored noise induced spatial patterns and spatial coherence resonances in a square lattice neuronal network composed of Morris-Lecar neurons are studied.Each neuron is at resting state near a saddle-node bifurcation on invariant circle,coupled to its nearest neighbors by electronic coupling.Spiral waves with different structures and disordered spatial structures can be alternately induced within a large range of noise intensity.By calculating spatial structure function and signal-to-noise ratio(SNR),it is found that SNR values are higher when the spiral structures are simple and are lower when the spatial patterns are complex or disordered,respectively.SNR manifest multiple local maximal peaks,indicating that the colored noise can induce multiple spatial coherence resonances.The maximal SNR values decrease as the correlation time of the noise increases.These results not only provide an example of multiple resonances,but also show that Gaussian colored noise play constructive roles in neuronal network.展开更多
A parabolic-bistable potential system driven by colored noise is studied. The exact analytical expressions of the stationary probability distribution (SPD) and the moments of the system are derived. Furthermore, the m...A parabolic-bistable potential system driven by colored noise is studied. The exact analytical expressions of the stationary probability distribution (SPD) and the moments of the system are derived. Furthermore, the mean first-passage time is calculated by the use of two approximate methods, respectively. It is found that (i) the double peaks of SPD are rubbed-down into a flat single peak with the increasing of noise intensity; (ii) a minimum occurs on the curve of the second-order moment of the system vs. noise intensity at the point ; (iii) the results obtained by our approximate approach are in good agreement with the numerical calculations for either small or large correlation time , while the conventional steepest descent approximation leads to poor results.展开更多
With unified colored noise approximation, the logistic growth model is used to analyze cancer cell population when colored noise is included. It is found that both the coupling between noise terms and the noise color...With unified colored noise approximation, the logistic growth model is used to analyze cancer cell population when colored noise is included. It is found that both the coupling between noise terms and the noise color can induce continuous first-order-like and re-entrance-like phase transitions in the system. The coupling and the noise color can also increase tumor cell growth for small number of cell mass and repress tumor cell growth for large number of cell mass. It is shown that the approximate analytic expressions are consistent with the numerical simulations.展开更多
A multiple targets detection method based on spatial smoothing (MTDSS) is proposed to solve the problem of the source number estimation under the colored noise background. The forward and backward smoothing based on...A multiple targets detection method based on spatial smoothing (MTDSS) is proposed to solve the problem of the source number estimation under the colored noise background. The forward and backward smoothing based on auxiliary vectors which are received data on some specific elements is computed. By the spatial smoothing with auxiliary vectors, the correlated signals are decorrelated, and the colored noise is partially alleviated. The correlation matrix formed from the cross correlations between subarray data and auxiliary vectors is computed. By exploring the second-order statistics property of the covariance matrix, a threshold based on Gerschgorin radii of the smoothing correlation matrix is set to estimate the number of sources. Simulations and experimental results validate that MTDSS has an effective performance under the condition of the colored noise background and coherent sources, and MTDSS is robust with the correlated factor of signals and noise.展开更多
A response analysis procedure is developed for a vibro-impact system excited by colored noise. The non-smooth transformation is used to convert the vibro-impact system into a new system without impact term. With the h...A response analysis procedure is developed for a vibro-impact system excited by colored noise. The non-smooth transformation is used to convert the vibro-impact system into a new system without impact term. With the help of the modified quasi-conservative averaging, the total energy of the new system can be approximated as a Markov process, and the stationary probability density function (PDF) of the total energy is derived. The response PDFs of the original system are obtained using the analytical solution of the stationary PDF of the total energy. The validity of the theoretical results is tested through comparison with the corresponding simulation results. Moreover, stochastic bifurcations are also explored.展开更多
We investigate the stochastic resonance (SR) phenomenon induced by the periodic signal in a metapopulation system with colored noises. The analytical expression of signal-to-noise is derived in the adiabatic limit. ...We investigate the stochastic resonance (SR) phenomenon induced by the periodic signal in a metapopulation system with colored noises. The analytical expression of signal-to-noise is derived in the adiabatic limit. By numerical calculation, the effects of the addictive noise intensity, the multiplicative noise intensity and two noise self-correlation times on SNR are respectively discussed. It shows that: (i) in the case that the addictive noise intensity M takes a small value, a SR phenomenon for the curve of SNR appears; however, when M takes a large value, SNR turns into a monotonic function on the multiplicative noise intensity Q. (ii) The resonance peaks in the plots of the multiplicative noise intensity Q versus its self-correlation time Vl and the addictive noise intensity M versus its self-correlation time ~2 translate in parallel. Mean- while, a parallel translation also appears in the plots of vl versus Q and v2 versus M. (iii) The interactive effects between self-correlation times Vl and v2 are opposite.展开更多
Based on adiabatic approximation theory,in this paper we study the asymmetric stochastic resonance system with time-delayed feedback driven by non-Gaussian colored noise.The analytical expressions of the mean first-pa...Based on adiabatic approximation theory,in this paper we study the asymmetric stochastic resonance system with time-delayed feedback driven by non-Gaussian colored noise.The analytical expressions of the mean first-passage time(MFPT)and output signal-to-noise ratio(SNR)are derived by using a path integral approach,unified colored-noise approximation(UCNA),and small delay approximation.The effects of time-delayed feedback and non-Gaussian colored noise on the output SNR are analyzed.Moreover,three types of asymmetric potential function characteristics are thoroughly discussed.And they are well-depth asymmetry(DASR),well-width asymmetry(WASR),and synchronous action of welldepth and well-width asymmetry(DWASR),respectively.The conclusion of this paper is that the time-delayed feedback can suppress SR,however,the non-Gaussian noise deviation parameter has the opposite effect.Moreover,the correlation time plays a significant role in improving SNR,and the SNR of asymmetric stochastic resonance is higher than that of symmetric stochastic resonance.Our experiments demonstrate that the appropriate parameters can make the asymmetric stochastic resonance perform better to detect weak signals than the symmetric stochastic resonance,in which no matter whether these signals have low frequency or high frequency,accompanied by strong or weak noise.展开更多
We present the logistic growth model to study the stochastic resonance (SR) in a bacterium growth system under the simultaneous action of two external multiplicative cross-correlation noises and periodic external fo...We present the logistic growth model to study the stochastic resonance (SR) in a bacterium growth system under the simultaneous action of two external multiplicative cross-correlation noises and periodic external forcing. The expression of the signal-to-noise ratio (SNR) for a bacterium growth system is derived by using the theory of SNR in the adiabatic limit. Based on SNR, we discuss the effects of self-correlation time τ1 and τ2, cross-correlation time 3-3 and cross-correlation strength λ on the SNR. It is found that the self-correlation time τ1 and τ2, and cross-correlation strength λ enhance the SR of the bacterium growth system, while cross-correlation time τ3 weakens the SR of the bacterium growth system.展开更多
Noise can induce inverse period-doubling transition and chaos. The effects of the colored noise on periodic orbits, of the different periodic sequences in the logistic map, are investigated. It is found that the dynam...Noise can induce inverse period-doubling transition and chaos. The effects of the colored noise on periodic orbits, of the different periodic sequences in the logistic map, are investigated. It is found that the dynamical behaviors of the orbits, induced by an exponentially correlated colored noise, are different in the mergence of transition, and the effects of the noise intensity on their dynamical behaviors are different from the effects of the correlation time of noise. Remarkably, the noise can induce new periodic orbits, namely, two new orbits emerge in the period-four sequence at the bifurcation parameter value μ = 3.5, four new orbits in the period-eight sequence at μ= 3.55, and three new orbits in the period-six sequence at μ = 3.846, respectively. Moreover, the dynamical behaviors of the new orbits clearly show the resonancelike response to the colored noise.展开更多
We analyzed the effect of colored noise on the negativity dynamics of a hybrid system consisting of a qubit-qutrit and not interacting,prepared from the start in an entangled one-parameter state and acting with noise ...We analyzed the effect of colored noise on the negativity dynamics of a hybrid system consisting of a qubit-qutrit and not interacting,prepared from the start in an entangled one-parameter state and acting with noise in local and non-local environments.In this pink and brown noise we investigated two different situations:in the first situation,the noise is produced by a bistable oscillator with an unknown exchange rate;however,in the second situation,the noise is generated by a set of bistable oscillators.We found that entanglement decreases with time to zero,and undergoes the phenomenon of sudden death and rebirth.The pink noise is more prone to entanglement than the brown noise and the non-local environment is more prone to entanglement than the local one.When the number of fluctuators is increased,entanglement decays faster and finally,for certain parameters of the initial state,the subsystems are not affected by the noise.展开更多
Based on statistical properties, two typical models are considered to calculate the uncertainties for some random noise sequences on the period extraction of a torsion pendulum, which is important and instructive in t...Based on statistical properties, two typical models are considered to calculate the uncertainties for some random noise sequences on the period extraction of a torsion pendulum, which is important and instructive in the measurement of gravitational constant G with the time-of-swing method. An expression of the uncertainty for the period measurement is obtained, which is dependent on the ratio ?t/(1/λ) where ?t is the interval of the sample time and 1/λ is the length of the correlation time. The result of processing experimental data shows that as the interval of the sample time ?t gradually shortens, the uncertainty of the period becomes smaller, and further when the ratio ?t/(1/λ) is less than 1, the uncertainty remains substantially unchanged.展开更多
According to a linear equation of the laser intensity of single-mode laser with input signal, we compute the generalized signal-to-noise ratio (GSNR) in the instantaneous-state of the single-mode laser, which is dri...According to a linear equation of the laser intensity of single-mode laser with input signal, we compute the generalized signal-to-noise ratio (GSNR) in the instantaneous-state of the single-mode laser, which is driven by two colored noises and correlated in the form of an e-exponential function. We detect that the stochastic resonance (SR) also occurs on instantaneous state at any time. Furthermore we discuss the GSNR trend to stable state in three different forms when taking different signal frequencies.展开更多
The nano-friction phenomenon in a one-dimensional Frenkel-Kontorova(FK)model under Gaussian colored noise is investigated by using the molecular dynamic simulation method.The role of colored noise is analyzed through ...The nano-friction phenomenon in a one-dimensional Frenkel-Kontorova(FK)model under Gaussian colored noise is investigated by using the molecular dynamic simulation method.The role of colored noise is analyzed through the inclusion of a stochastic force via a Langevin molecular dynamics method.Via the stochastic Runge-Kutta algorithm,the relationship between different parameter values of the Gaussian colored noise(the noise intensity and the correlation time)and the nano-friction phenomena such as hysteresis,the maximum static friction force is separately studied here.Similar results are obtained from the two geometrically opposed ideal cases:incommensurate and commensurate interfaces.It was found that the noise strongly influences the hysteresis and maximum static friction force and with an appropriate external driving force,the introduction of noise can accelerate the motion of the system,making the atoms escape from the substrate potential well more easily.Interestingly,suitable correlation time and noise intensity give rise to super-lubricity.It is noteworthy that the difference between the two circumstances lies in the fact that the effect of the noise is much stronger on triggering the motion of the FK model for the commensurate interface than that for the incommensurate interface.展开更多
The steady states and the transient properties of an insect outbreak model driven by Gaussian colored noise are studied in this paper. According to the Fokker-Planck equation in the unified colored-noise approximation...The steady states and the transient properties of an insect outbreak model driven by Gaussian colored noise are studied in this paper. According to the Fokker-Planck equation in the unified colored-noise approximation, we analyse the stationary probability distribution and the mean first-passage time of this model. By numerical analysis, the effects of the self-correlation time of insect birth rate and predation rate respectively reveal a manifest population divergence on the insect density. The decrease of the mean first-passage time indicates an enhancement dynamic on the density divergency with colored noise of a large self-correlation time based on the insect outbreak model.展开更多
The interplay between noise and nonlinearites can lead to escape dynamics.Associated nonlinear phe-nomena have been observed in various applications ranging from climatology to biology and engineering.For reasons of c...The interplay between noise and nonlinearites can lead to escape dynamics.Associated nonlinear phe-nomena have been observed in various applications ranging from climatology to biology and engineering.For reasons of computational ease,in most studies,Gaussian white noise is used.However,this noise model is not physical due to the associated infinite energy content.Here,the authors present extensive experimental investigations and numerical simulations conducted to examine the impact of noise color on escape times in nonlinear oscillators.With a careful parameterization of the numerical simulations,the authors are able to make quantitative comparisons with experimental results.Through the experi-ments and simulations,it is illustrated that the noise color can drastically influence escape times and escape probability.展开更多
The approach of estimating the number of signals based on information theoretic criteria has good performance in the assumption of white noise, but it always leads to false estimation of the coherent sources in colore...The approach of estimating the number of signals based on information theoretic criteria has good performance in the assumption of white noise, but it always leads to false estimation of the coherent sources in colored noise. An approach combining the combined information theoretic criteria and eigen- value correction, is presented to determine number of signals. The method uses maximum likelihood (ML) and information theoretic criteria to estimate coherent signals alternately, then eliminate the inequality of the eigenvalues caused by colored noise by correcting the noise eigenvalues. The computer simulation results prove the effective performance of the method.展开更多
The phenomenon of stochastic resonance (SR) in a bistable nonlinear system is studied when the system is driven by the asymmetric potential and additive Gaussian colored noise. Using the unified colored noise approx...The phenomenon of stochastic resonance (SR) in a bistable nonlinear system is studied when the system is driven by the asymmetric potential and additive Gaussian colored noise. Using the unified colored noise approximation method, the additive Gaussian colored noise can be simplified to additive Gaussian white noise. The signal-to-noise ratio (SNR) is calculated according to the generalized two-state theory (shown in [H.S. Wio and S. Bouzat, Brazilian J.Phys. 29 (1999) 136]). We find that the SNR increases with the proximity of a to zero. In addition, the correlation time T between the additive Gaussian colored noise is also an ingredient to improve SR. The shorter the correlation time T between the Gaussian additive colored noise is, the higher of the peak value of SNR.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant No.11302157)the Natural Science Basic Research Plan in Shaanxi Province of China(Grant No.2015JM1028)+1 种基金the Fundamental Research Funds for the Central Universities,China(Grant No.JB160706)Chinese–Serbian Science and Technology Cooperation for the Years 2015-2016(Grant No.3-19)
文摘The stochastic bifurcation of a generalized Duffing–van der Pol system with fractional derivative under color noise excitation is studied. Firstly, fractional derivative in a form of generalized integral with time-delay is approximated by a set of periodic functions. Based on this work, the stochastic averaging method is applied to obtain the FPK equation and the stationary probability density of the amplitude. After that, the critical parameter conditions of stochastic P-bifurcation are obtained based on the singularity theory. Different types of stationary probability densities of the amplitude are also obtained. The study finds that the change of noise intensity, fractional order, and correlation time will lead to the stochastic bifurcation.
基金The project supported by National Natural Science Foundation of China under Grant No. 10547130 and Natural Science Foundation of Jiangsu Province of China under Grant No. BK2001138
文摘A single-mode laser with coupling between additive and multiplicative noise terms is investigated when the multiplicative noise and the coupling between two noise terms are colored fluctuations with finite correlation times T1 and T2. Combining the unified colored noise approximation (UCNA) and the functional analysis, the stationary probability distribution (SPD) and the variance of the laser intensity is derived. It is found that the colored nature of multiplicative noise and the coupling strength between two noise terms can affect both the structure and the height of the SPD, while the colored nature of the coupling between two noise terms can only affect the height of the SPD. The multiplicative noise can enhance the intensity fluctuations while the additive noise can reduce the fluctuations in a laser system. Numerical simulations are presented and consistent to the analytical results.
基金Supported by National Natural Science Foundation of China under Grant No.10275025
文摘A single-mode laser noise model driven by quadratic colored pump noise and biased amplitude modulationsignal is proposed.The analytic expression of signal-to-noise ratio is calculated by using a new linearized procedure.Itis found that there are three different typies of stochastic resonance in the model:the conventional form of stochasticresonance,the stochastic resonance in the broad sense,and the bona fide SR.
基金Supported by National Natural Science Foundation of China under Grant Nos. 11072135 and 10772101the Fundamental Research Funds for the Central Universities under Grant No. GK200902025
文摘Gaussian colored noise induced spatial patterns and spatial coherence resonances in a square lattice neuronal network composed of Morris-Lecar neurons are studied.Each neuron is at resting state near a saddle-node bifurcation on invariant circle,coupled to its nearest neighbors by electronic coupling.Spiral waves with different structures and disordered spatial structures can be alternately induced within a large range of noise intensity.By calculating spatial structure function and signal-to-noise ratio(SNR),it is found that SNR values are higher when the spiral structures are simple and are lower when the spatial patterns are complex or disordered,respectively.SNR manifest multiple local maximal peaks,indicating that the colored noise can induce multiple spatial coherence resonances.The maximal SNR values decrease as the correlation time of the noise increases.These results not only provide an example of multiple resonances,but also show that Gaussian colored noise play constructive roles in neuronal network.
文摘A parabolic-bistable potential system driven by colored noise is studied. The exact analytical expressions of the stationary probability distribution (SPD) and the moments of the system are derived. Furthermore, the mean first-passage time is calculated by the use of two approximate methods, respectively. It is found that (i) the double peaks of SPD are rubbed-down into a flat single peak with the increasing of noise intensity; (ii) a minimum occurs on the curve of the second-order moment of the system vs. noise intensity at the point ; (iii) the results obtained by our approximate approach are in good agreement with the numerical calculations for either small or large correlation time , while the conventional steepest descent approximation leads to poor results.
基金The project supported by the Natural Science Foundation of Jiangsu Province of China under Grant No. BK2001138
文摘With unified colored noise approximation, the logistic growth model is used to analyze cancer cell population when colored noise is included. It is found that both the coupling between noise terms and the noise color can induce continuous first-order-like and re-entrance-like phase transitions in the system. The coupling and the noise color can also increase tumor cell growth for small number of cell mass and repress tumor cell growth for large number of cell mass. It is shown that the approximate analytic expressions are consistent with the numerical simulations.
基金supported by the National Natural Science Foundation of China (61001153)the Fundamental Research Program of Northwestern Polytechnical University (JC20100223)
文摘A multiple targets detection method based on spatial smoothing (MTDSS) is proposed to solve the problem of the source number estimation under the colored noise background. The forward and backward smoothing based on auxiliary vectors which are received data on some specific elements is computed. By the spatial smoothing with auxiliary vectors, the correlated signals are decorrelated, and the colored noise is partially alleviated. The correlation matrix formed from the cross correlations between subarray data and auxiliary vectors is computed. By exploring the second-order statistics property of the covariance matrix, a threshold based on Gerschgorin radii of the smoothing correlation matrix is set to estimate the number of sources. Simulations and experimental results validate that MTDSS has an effective performance under the condition of the colored noise background and coherent sources, and MTDSS is robust with the correlated factor of signals and noise.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11172233,10932009,and 11202160)the Natural Science Foundation of Shaanxi Province,China(Grant No.2012JQ1004)
文摘A response analysis procedure is developed for a vibro-impact system excited by colored noise. The non-smooth transformation is used to convert the vibro-impact system into a new system without impact term. With the help of the modified quasi-conservative averaging, the total energy of the new system can be approximated as a Markov process, and the stationary probability density function (PDF) of the total energy is derived. The response PDFs of the original system are obtained using the analytical solution of the stationary PDF of the total energy. The validity of the theoretical results is tested through comparison with the corresponding simulation results. Moreover, stochastic bifurcations are also explored.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11072107,91016022,and 11232007)the Research Fund of State Key Laboratory of Mechanics and Control of Mechanical Structures of Nanjing University of Aeronautics and astronautics,China(Grant No.0113G01)+1 种基金the Natural Science Foundation of the Higher Education Institutions of Jiangsu Province,China(Grant No.13KJB110006)the Project Fund of Jiangsu University of Science and Technology,China(Grant No.633051203)
文摘We investigate the stochastic resonance (SR) phenomenon induced by the periodic signal in a metapopulation system with colored noises. The analytical expression of signal-to-noise is derived in the adiabatic limit. By numerical calculation, the effects of the addictive noise intensity, the multiplicative noise intensity and two noise self-correlation times on SNR are respectively discussed. It shows that: (i) in the case that the addictive noise intensity M takes a small value, a SR phenomenon for the curve of SNR appears; however, when M takes a large value, SNR turns into a monotonic function on the multiplicative noise intensity Q. (ii) The resonance peaks in the plots of the multiplicative noise intensity Q versus its self-correlation time Vl and the addictive noise intensity M versus its self-correlation time ~2 translate in parallel. Mean- while, a parallel translation also appears in the plots of vl versus Q and v2 versus M. (iii) The interactive effects between self-correlation times Vl and v2 are opposite.
基金Project supported by the National Natural Science Foundation of China(Grant No.60551002)the Natural Science Foundation of Hunan Province,China(Grant No.2018JJ3680).
文摘Based on adiabatic approximation theory,in this paper we study the asymmetric stochastic resonance system with time-delayed feedback driven by non-Gaussian colored noise.The analytical expressions of the mean first-passage time(MFPT)and output signal-to-noise ratio(SNR)are derived by using a path integral approach,unified colored-noise approximation(UCNA),and small delay approximation.The effects of time-delayed feedback and non-Gaussian colored noise on the output SNR are analyzed.Moreover,three types of asymmetric potential function characteristics are thoroughly discussed.And they are well-depth asymmetry(DASR),well-width asymmetry(WASR),and synchronous action of welldepth and well-width asymmetry(DWASR),respectively.The conclusion of this paper is that the time-delayed feedback can suppress SR,however,the non-Gaussian noise deviation parameter has the opposite effect.Moreover,the correlation time plays a significant role in improving SNR,and the SNR of asymmetric stochastic resonance is higher than that of symmetric stochastic resonance.Our experiments demonstrate that the appropriate parameters can make the asymmetric stochastic resonance perform better to detect weak signals than the symmetric stochastic resonance,in which no matter whether these signals have low frequency or high frequency,accompanied by strong or weak noise.
基金Supported by the Natural Science Foundation of Yunnan Province under Grant Nos.2005A0080m-2 and 08C0235the Key Subjects Fund for Condensed Physics of Qujing Normal University
文摘We present the logistic growth model to study the stochastic resonance (SR) in a bacterium growth system under the simultaneous action of two external multiplicative cross-correlation noises and periodic external forcing. The expression of the signal-to-noise ratio (SNR) for a bacterium growth system is derived by using the theory of SNR in the adiabatic limit. Based on SNR, we discuss the effects of self-correlation time τ1 and τ2, cross-correlation time 3-3 and cross-correlation strength λ on the SNR. It is found that the self-correlation time τ1 and τ2, and cross-correlation strength λ enhance the SR of the bacterium growth system, while cross-correlation time τ3 weakens the SR of the bacterium growth system.
基金Supported by the National Natural Science Foundation of China under Grant No.30600122GuangDong Provincial Natural Science Foundation under Grant No.06025073
文摘Noise can induce inverse period-doubling transition and chaos. The effects of the colored noise on periodic orbits, of the different periodic sequences in the logistic map, are investigated. It is found that the dynamical behaviors of the orbits, induced by an exponentially correlated colored noise, are different in the mergence of transition, and the effects of the noise intensity on their dynamical behaviors are different from the effects of the correlation time of noise. Remarkably, the noise can induce new periodic orbits, namely, two new orbits emerge in the period-four sequence at the bifurcation parameter value μ = 3.5, four new orbits in the period-eight sequence at μ= 3.55, and three new orbits in the period-six sequence at μ = 3.846, respectively. Moreover, the dynamical behaviors of the new orbits clearly show the resonancelike response to the colored noise.
文摘We analyzed the effect of colored noise on the negativity dynamics of a hybrid system consisting of a qubit-qutrit and not interacting,prepared from the start in an entangled one-parameter state and acting with noise in local and non-local environments.In this pink and brown noise we investigated two different situations:in the first situation,the noise is produced by a bistable oscillator with an unknown exchange rate;however,in the second situation,the noise is generated by a set of bistable oscillators.We found that entanglement decreases with time to zero,and undergoes the phenomenon of sudden death and rebirth.The pink noise is more prone to entanglement than the brown noise and the non-local environment is more prone to entanglement than the local one.When the number of fluctuators is increased,entanglement decays faster and finally,for certain parameters of the initial state,the subsystems are not affected by the noise.
基金supported by the National Natural Science Foundation of China(Grant Nos.11175160,11275075,and 11575160)
文摘Based on statistical properties, two typical models are considered to calculate the uncertainties for some random noise sequences on the period extraction of a torsion pendulum, which is important and instructive in the measurement of gravitational constant G with the time-of-swing method. An expression of the uncertainty for the period measurement is obtained, which is dependent on the ratio ?t/(1/λ) where ?t is the interval of the sample time and 1/λ is the length of the correlation time. The result of processing experimental data shows that as the interval of the sample time ?t gradually shortens, the uncertainty of the period becomes smaller, and further when the ratio ?t/(1/λ) is less than 1, the uncertainty remains substantially unchanged.
基金The project supported by National Natural Science Foundation of Chain under Grant No. 10275025 and Natural Scicnce Foundation of Xiangfan University
文摘According to a linear equation of the laser intensity of single-mode laser with input signal, we compute the generalized signal-to-noise ratio (GSNR) in the instantaneous-state of the single-mode laser, which is driven by two colored noises and correlated in the form of an e-exponential function. We detect that the stochastic resonance (SR) also occurs on instantaneous state at any time. Furthermore we discuss the GSNR trend to stable state in three different forms when taking different signal frequencies.
基金Project supported by the National Natural Science Foundation of China(Grant No.11902081)the Science and Technology Innovation Foundation of Higher Education Institutions of Shanxi Province,China(Grant No.2020L0172)+1 种基金the Natural Science Foundation for Young Scientists of Shanxi Agricultural University,China(Grant No.2020QC04)the Research Fund of Shanxi Agriculture University,China(Grant No.2021BQ12)。
文摘The nano-friction phenomenon in a one-dimensional Frenkel-Kontorova(FK)model under Gaussian colored noise is investigated by using the molecular dynamic simulation method.The role of colored noise is analyzed through the inclusion of a stochastic force via a Langevin molecular dynamics method.Via the stochastic Runge-Kutta algorithm,the relationship between different parameter values of the Gaussian colored noise(the noise intensity and the correlation time)and the nano-friction phenomena such as hysteresis,the maximum static friction force is separately studied here.Similar results are obtained from the two geometrically opposed ideal cases:incommensurate and commensurate interfaces.It was found that the noise strongly influences the hysteresis and maximum static friction force and with an appropriate external driving force,the introduction of noise can accelerate the motion of the system,making the atoms escape from the substrate potential well more easily.Interestingly,suitable correlation time and noise intensity give rise to super-lubricity.It is noteworthy that the difference between the two circumstances lies in the fact that the effect of the noise is much stronger on triggering the motion of the FK model for the commensurate interface than that for the incommensurate interface.
基金Project supported by the Natural Science Basic Research Plan in Shaanxi Province,China (Grant No. SJ08A12)the Science Foundation of the Education Bureau of Shaanxi Province,China (Grant No. 12JK0962)the Science Foundation of Baoji University of Science and Arts of China (Grant No. ZK11053)
文摘The steady states and the transient properties of an insect outbreak model driven by Gaussian colored noise are studied in this paper. According to the Fokker-Planck equation in the unified colored-noise approximation, we analyse the stationary probability distribution and the mean first-passage time of this model. By numerical analysis, the effects of the self-correlation time of insect birth rate and predation rate respectively reveal a manifest population divergence on the insect density. The decrease of the mean first-passage time indicates an enhancement dynamic on the density divergency with colored noise of a large self-correlation time based on the insect outbreak model.
基金CMMI 1760366 and the as-sociated data science supplementsA preliminary report of this work has been presented and discussed at the ASME 2022 Inter-national Design Engineering Technical Conference&Computer and Information in Engineering conference(IDETC/CIE 2022)。
文摘The interplay between noise and nonlinearites can lead to escape dynamics.Associated nonlinear phe-nomena have been observed in various applications ranging from climatology to biology and engineering.For reasons of computational ease,in most studies,Gaussian white noise is used.However,this noise model is not physical due to the associated infinite energy content.Here,the authors present extensive experimental investigations and numerical simulations conducted to examine the impact of noise color on escape times in nonlinear oscillators.With a careful parameterization of the numerical simulations,the authors are able to make quantitative comparisons with experimental results.Through the experi-ments and simulations,it is illustrated that the noise color can drastically influence escape times and escape probability.
文摘The approach of estimating the number of signals based on information theoretic criteria has good performance in the assumption of white noise, but it always leads to false estimation of the coherent sources in colored noise. An approach combining the combined information theoretic criteria and eigen- value correction, is presented to determine number of signals. The method uses maximum likelihood (ML) and information theoretic criteria to estimate coherent signals alternately, then eliminate the inequality of the eigenvalues caused by colored noise by correcting the noise eigenvalues. The computer simulation results prove the effective performance of the method.
文摘The phenomenon of stochastic resonance (SR) in a bistable nonlinear system is studied when the system is driven by the asymmetric potential and additive Gaussian colored noise. Using the unified colored noise approximation method, the additive Gaussian colored noise can be simplified to additive Gaussian white noise. The signal-to-noise ratio (SNR) is calculated according to the generalized two-state theory (shown in [H.S. Wio and S. Bouzat, Brazilian J.Phys. 29 (1999) 136]). We find that the SNR increases with the proximity of a to zero. In addition, the correlation time T between the additive Gaussian colored noise is also an ingredient to improve SR. The shorter the correlation time T between the Gaussian additive colored noise is, the higher of the peak value of SNR.