Around one in eight women will be diagnosed with breast cancer at some time.Improved patient outcomes necessitate both early detection and an accurate diagnosis.Histological images are routinely utilized in the proces...Around one in eight women will be diagnosed with breast cancer at some time.Improved patient outcomes necessitate both early detection and an accurate diagnosis.Histological images are routinely utilized in the process of diagnosing breast cancer.Methods proposed in recent research only focus on classifying breast cancer on specific magnification levels.No study has focused on using a combined dataset with multiple magnification levels to classify breast cancer.A strategy for detecting breast cancer is provided in the context of this investigation.Histopathology image texture data is used with the wavelet transform in this technique.The proposed method comprises converting histopathological images from Red Green Blue(RGB)to Chrominance of Blue and Chrominance of Red(YCBCR),utilizing a wavelet transform to extract texture information,and classifying the images with Extreme Gradient Boosting(XGBOOST).Furthermore,SMOTE has been used for resampling as the dataset has imbalanced samples.The suggested method is evaluated using 10-fold cross-validation and achieves an accuracy of 99.27%on the BreakHis 1.040X dataset,98.95%on the BreakHis 1.0100X dataset,98.92%on the BreakHis 1.0200X dataset,98.78%on the BreakHis 1.0400X dataset,and 98.80%on the combined dataset.The findings of this study imply that improved breast cancer detection rates and patient outcomes can be achieved by combining wavelet transformation with textural signals to detect breast cancer in histopathology images.展开更多
In this work, image feature vectors are formed for blocks containing sufficient information, which are selected using a singular-value criterion. When the ratio between the first two SVs axe below a given threshold, t...In this work, image feature vectors are formed for blocks containing sufficient information, which are selected using a singular-value criterion. When the ratio between the first two SVs axe below a given threshold, the block is considered informative. A total of 12 features including statistics of brightness, color components and texture measures are used to form intermediate vectors. Principal component analysis is then performed to reduce the dimension to 6 to give the final feature vectors. Relevance of the constructed feature vectors is demonstrated by experiments in which k-means clustering is used to group the vectors hence the blocks. Blocks falling into the same group show similar visual appearances.展开更多
Globally traffic signs are used by all countries for healthier traffic flow and to protect drivers and pedestrians.Consequently,traffic signs have been of great importance for every civilized country,which makes resea...Globally traffic signs are used by all countries for healthier traffic flow and to protect drivers and pedestrians.Consequently,traffic signs have been of great importance for every civilized country,which makes researchers give more focus on the automatic detection of traffic signs.Detecting these traffic signs is challenging due to being in the dark,far away,partially occluded,and affected by the lighting or the presence of similar objects.An innovative traffic sign detection method for red and blue signs in color images is proposed to resolve these issues.This technique aimed to devise an efficient,robust and accurate approach.To attain this,initially,the approach presented a new formula,inspired by existing work,to enhance the image using red and green channels instead of blue,which segmented using a threshold calculated from the correlational property of the image.Next,a new set of features is proposed,motivated by existing features.Texture and color features are fused after getting extracted on the channel of Red,Green,and Blue(RGB),Hue,Saturation,and Value(HSV),and YCbCr color models of images.Later,the set of features is employed on different classification frameworks,from which quadratic support vector machine(SVM)outnumbered the others with an accuracy of 98.5%.The proposed method is tested on German Traffic Sign Detection Benchmark(GTSDB)images.The results are satisfactory when compared to the preceding work.展开更多
In this paper, we propose a product image retrieval method based on the object contour corners, image texture and color. The product image mainly highlights the object and its background is very simple. According to t...In this paper, we propose a product image retrieval method based on the object contour corners, image texture and color. The product image mainly highlights the object and its background is very simple. According to these characteristics, we represent the object using its contour, and detect the corners of contour to reduce the number of pixels. Every corner is described using its approximate curvature based on distance. In addition, the Block Difference of Inverse Probabilities (BDIP) and Block Variation of Local Correlation (BVLC) texture features and color moment are extracted from image's HIS color space. Finally, dynamic time warping method is used to match features with different length. In order to demonstrate the effect of the proposed method, we carry out experiments in Mi-crosoft product image database, and compare it with other feature descriptors. The retrieval precision and recall curves show that our method is feasible.展开更多
Technologies that can efficiently identify citrus diseases would assure fruit quality and safety and minimize losses for citrus industry.This research was aimed to investigate the potential of using color texture feat...Technologies that can efficiently identify citrus diseases would assure fruit quality and safety and minimize losses for citrus industry.This research was aimed to investigate the potential of using color texture features for detecting citrus peel diseases.A color imaging system was developed to acquire RGB images from grapefruits with normal and five common diseased peel conditions(i.e.,canker,copper burn,greasy spot,melanose,and wind scar).A total of 39 image texture features were determined from the transformed hue(H),saturation(S),and intensity(I)region-of-interest images using the color co-occurrence method for each fruit sample.Algorithms for selecting useful texture features were developed based on a stepwise discriminant analysis,and 14,9,and 11 texture features were selected for three color combinations of HSI,HS,and I,respectively.Classification models were constructed using the reduced texture feature sets through a discriminant function based on a measure of the generalized squared distance.The model using 14 selected HSI texture features achieved the best classification accuracy(96.7%),which suggested that it would be best to use a reduced hue,saturation and intensity texture feature set to differentiate citrus peel diseases.Average classification accuracy and standard deviation were 96.0%and 2.3%,respectively,for a stability test of the classification model,indicating that the model is robust for classifying new fruit samples according to their peel conditions.This research demonstrated that color imaging and texture feature analysis could be used for classifying citrus peel diseases under the controlled laboratory lighting conditions.展开更多
A new matting algorithm based on color distance and differential distance is proposed to deal with the problem that many matting methods perform poorly with complex natural images.The proposed method combines local sa...A new matting algorithm based on color distance and differential distance is proposed to deal with the problem that many matting methods perform poorly with complex natural images.The proposed method combines local sampling with global sampling to select foreground and background pairs for unknown pixels and then a new cost function is constructed based on color distance and differential distance to further optimize the selected sample pairs.Finally,a quadratic objective function is used based on matte Laplacian coming from KNN matting which is added with texture feature.Through experiments on various test images,it is confirmed that the results obtained by the proposed method are more accurate than those obtained by traditional methods.The four-error-metrics comparison on benchmark dataset among several algorithms also proves the effectiveness of the proposed method.展开更多
基金funded by Princess Nourah bint Abdulrahman University Researchers Supporting Project Number(PNURSP2023R236),Princess Nourah bint Abdulrahman University,Riyadh,Saudi Arabia.
文摘Around one in eight women will be diagnosed with breast cancer at some time.Improved patient outcomes necessitate both early detection and an accurate diagnosis.Histological images are routinely utilized in the process of diagnosing breast cancer.Methods proposed in recent research only focus on classifying breast cancer on specific magnification levels.No study has focused on using a combined dataset with multiple magnification levels to classify breast cancer.A strategy for detecting breast cancer is provided in the context of this investigation.Histopathology image texture data is used with the wavelet transform in this technique.The proposed method comprises converting histopathological images from Red Green Blue(RGB)to Chrominance of Blue and Chrominance of Red(YCBCR),utilizing a wavelet transform to extract texture information,and classifying the images with Extreme Gradient Boosting(XGBOOST).Furthermore,SMOTE has been used for resampling as the dataset has imbalanced samples.The suggested method is evaluated using 10-fold cross-validation and achieves an accuracy of 99.27%on the BreakHis 1.040X dataset,98.95%on the BreakHis 1.0100X dataset,98.92%on the BreakHis 1.0200X dataset,98.78%on the BreakHis 1.0400X dataset,and 98.80%on the combined dataset.The findings of this study imply that improved breast cancer detection rates and patient outcomes can be achieved by combining wavelet transformation with textural signals to detect breast cancer in histopathology images.
基金Project supported by the National Natural Science Foundation of China (Grant No.60502039), the Shanghai Rising-Star Program (Grant No.06QA14022), and the Key Project of Shanghai Municipality for Basic Research (Grant No.04JC14037)
文摘In this work, image feature vectors are formed for blocks containing sufficient information, which are selected using a singular-value criterion. When the ratio between the first two SVs axe below a given threshold, the block is considered informative. A total of 12 features including statistics of brightness, color components and texture measures are used to form intermediate vectors. Principal component analysis is then performed to reduce the dimension to 6 to give the final feature vectors. Relevance of the constructed feature vectors is demonstrated by experiments in which k-means clustering is used to group the vectors hence the blocks. Blocks falling into the same group show similar visual appearances.
基金supported in part by the Basic Science Research Program through the National Research Foundation of Korea(NRF)funded by the Ministry of Education under Grant NRF-2019R1A2C1006159 and Grant NRF-2021R1A6A1A03039493in part by the 2022 Yeungnam University Research Grant.
文摘Globally traffic signs are used by all countries for healthier traffic flow and to protect drivers and pedestrians.Consequently,traffic signs have been of great importance for every civilized country,which makes researchers give more focus on the automatic detection of traffic signs.Detecting these traffic signs is challenging due to being in the dark,far away,partially occluded,and affected by the lighting or the presence of similar objects.An innovative traffic sign detection method for red and blue signs in color images is proposed to resolve these issues.This technique aimed to devise an efficient,robust and accurate approach.To attain this,initially,the approach presented a new formula,inspired by existing work,to enhance the image using red and green channels instead of blue,which segmented using a threshold calculated from the correlational property of the image.Next,a new set of features is proposed,motivated by existing features.Texture and color features are fused after getting extracted on the channel of Red,Green,and Blue(RGB),Hue,Saturation,and Value(HSV),and YCbCr color models of images.Later,the set of features is employed on different classification frameworks,from which quadratic support vector machine(SVM)outnumbered the others with an accuracy of 98.5%.The proposed method is tested on German Traffic Sign Detection Benchmark(GTSDB)images.The results are satisfactory when compared to the preceding work.
基金Supported by the Major Program of National Natural Science Foundation of China (No. 70890080 and No. 70890083)
文摘In this paper, we propose a product image retrieval method based on the object contour corners, image texture and color. The product image mainly highlights the object and its background is very simple. According to these characteristics, we represent the object using its contour, and detect the corners of contour to reduce the number of pixels. Every corner is described using its approximate curvature based on distance. In addition, the Block Difference of Inverse Probabilities (BDIP) and Block Variation of Local Correlation (BVLC) texture features and color moment are extracted from image's HIS color space. Finally, dynamic time warping method is used to match features with different length. In order to demonstrate the effect of the proposed method, we carry out experiments in Mi-crosoft product image database, and compare it with other feature descriptors. The retrieval precision and recall curves show that our method is feasible.
文摘Technologies that can efficiently identify citrus diseases would assure fruit quality and safety and minimize losses for citrus industry.This research was aimed to investigate the potential of using color texture features for detecting citrus peel diseases.A color imaging system was developed to acquire RGB images from grapefruits with normal and five common diseased peel conditions(i.e.,canker,copper burn,greasy spot,melanose,and wind scar).A total of 39 image texture features were determined from the transformed hue(H),saturation(S),and intensity(I)region-of-interest images using the color co-occurrence method for each fruit sample.Algorithms for selecting useful texture features were developed based on a stepwise discriminant analysis,and 14,9,and 11 texture features were selected for three color combinations of HSI,HS,and I,respectively.Classification models were constructed using the reduced texture feature sets through a discriminant function based on a measure of the generalized squared distance.The model using 14 selected HSI texture features achieved the best classification accuracy(96.7%),which suggested that it would be best to use a reduced hue,saturation and intensity texture feature set to differentiate citrus peel diseases.Average classification accuracy and standard deviation were 96.0%and 2.3%,respectively,for a stability test of the classification model,indicating that the model is robust for classifying new fruit samples according to their peel conditions.This research demonstrated that color imaging and texture feature analysis could be used for classifying citrus peel diseases under the controlled laboratory lighting conditions.
基金Supported by the National Natural Science Foundation of China(No.61133009,U1304616)
文摘A new matting algorithm based on color distance and differential distance is proposed to deal with the problem that many matting methods perform poorly with complex natural images.The proposed method combines local sampling with global sampling to select foreground and background pairs for unknown pixels and then a new cost function is constructed based on color distance and differential distance to further optimize the selected sample pairs.Finally,a quadratic objective function is used based on matte Laplacian coming from KNN matting which is added with texture feature.Through experiments on various test images,it is confirmed that the results obtained by the proposed method are more accurate than those obtained by traditional methods.The four-error-metrics comparison on benchmark dataset among several algorithms also proves the effectiveness of the proposed method.