Well-channeled porous polyethersulfone(PES) beads were synthesized and used for the immobilization of Comamonas testosteroni QYY cells for an aerobic reactor to remove quinoline, phenol, and other refractory com- po...Well-channeled porous polyethersulfone(PES) beads were synthesized and used for the immobilization of Comamonas testosteroni QYY cells for an aerobic reactor to remove quinoline, phenol, and other refractory com- pounds in accidentally-released dye wastewater supplemented with domestic wastewater. The pore size in PES beads mainly depended on the dripping time through the Water vapor cylinder. When the cylinder was 2.5 m in length, the pore size in the obtained beads was enlarged to 3 ~m, which provided an ideal surface for cells to pass through and grow inside. The reactor with the immobilized C. testosteroni QYY on PES beads resisted organic loading shock and enhanced total organic carbon(TOC) removal, which had 100% removal efficiencies of both quinoline and phenol when the volume ratio of the accidental wastewater to domestic wastewater was increased from 1:2 to 1:1, as compared with the 100% and 34.7% removal efficiencies by the reactor with immobilized C. testosteroni QYY on polyttrethane(PU) cube or the 82% and 2.4% removal efficiencies by the reactor with only the suspended C. testosteroni QYY cells, respectively. The PES beads had a specific surface area of 1843 cm2/cm3, which had immobilized (0.0244-0.003) g of C, testosteroni QYY cell dry mass/cm3, compared with the specific surface area of 564 cm2/cm3 of the PU cube with (0.0184-0.002) g of cell dry mass/cm3. The kinetic study revealed that the quinoline and phenol degradation followed zero-order reactions for all the three reactors. The PES reactor demonstrated the highest quinoline and phenol removal efficiencies. The immobilized C. testosteroni QYY on the low-cost inert PES beads demonstrated good shock resistance and was able to completely remove the toxic compounds, including phenyl carbamate, 2-nitrotoluene, and dioctyl phthalate. Therefore, the beads were ideal for large-scale accidental wastewater treatment.展开更多
基金Supported by the Major Science and Technology Program for Water Pollution Control and Treatment of China(No. 2014ZX07201-011-004), the National Natural Science Foundation of China(Nos.51578118, 51378098, 51238001, 51408110, 51508078, 51478095, 51478096), the Natural Science Foundation of Jilin Province, China(Nos.20150101072JC, 20140520151JH, 20160520023JH), the Jilm Province Education Department Science and Technology Research Project, China(No.2014B043) and the Program for New Century Excellent Talents in University of the Ministry of Education of China(No.NCET-13-0723).
文摘Well-channeled porous polyethersulfone(PES) beads were synthesized and used for the immobilization of Comamonas testosteroni QYY cells for an aerobic reactor to remove quinoline, phenol, and other refractory com- pounds in accidentally-released dye wastewater supplemented with domestic wastewater. The pore size in PES beads mainly depended on the dripping time through the Water vapor cylinder. When the cylinder was 2.5 m in length, the pore size in the obtained beads was enlarged to 3 ~m, which provided an ideal surface for cells to pass through and grow inside. The reactor with the immobilized C. testosteroni QYY on PES beads resisted organic loading shock and enhanced total organic carbon(TOC) removal, which had 100% removal efficiencies of both quinoline and phenol when the volume ratio of the accidental wastewater to domestic wastewater was increased from 1:2 to 1:1, as compared with the 100% and 34.7% removal efficiencies by the reactor with immobilized C. testosteroni QYY on polyttrethane(PU) cube or the 82% and 2.4% removal efficiencies by the reactor with only the suspended C. testosteroni QYY cells, respectively. The PES beads had a specific surface area of 1843 cm2/cm3, which had immobilized (0.0244-0.003) g of C, testosteroni QYY cell dry mass/cm3, compared with the specific surface area of 564 cm2/cm3 of the PU cube with (0.0184-0.002) g of cell dry mass/cm3. The kinetic study revealed that the quinoline and phenol degradation followed zero-order reactions for all the three reactors. The PES reactor demonstrated the highest quinoline and phenol removal efficiencies. The immobilized C. testosteroni QYY on the low-cost inert PES beads demonstrated good shock resistance and was able to completely remove the toxic compounds, including phenyl carbamate, 2-nitrotoluene, and dioctyl phthalate. Therefore, the beads were ideal for large-scale accidental wastewater treatment.