Optical frequency combs,as powerful tools for precision spectroscopy and research into optical frequency standards,have driven continuous progress and significant breakthroughs in applications such as time-frequency t...Optical frequency combs,as powerful tools for precision spectroscopy and research into optical frequency standards,have driven continuous progress and significant breakthroughs in applications such as time-frequency transfer,measurement of fundamental physical constants,and high-precision ranging,achieving a series of milestone results in ground-based environments.With the continuous maturation and evolution of femtosecond lasers and related technologies,optical frequency combs are moving from ground-based applications to astronomical and space-based applications,playing an increasingly important role in atomic clocks,exoplanet observations,gravitational wave measurements,and other areas.This paper,focusing on astronomical and space-based applications,reviews research progress on astronomical frequency combs,optical clock time-frequency networks,gravitational waves,dark matter measurement,dual-comb large-scale absolute ranging,and high-resolution atmospheric spectroscopy.With enhanced performance and their gradual application in the field of space-based research,optical frequency combs will undoubtedly provide more powerful support for astronomical science and cosmic exploration in the future.展开更多
Laser absorption spectroscopy has proven to be an effective approach for gas sensing, which plays an important rolein the fields of military, industry, medicine and basic research. This paper presents a multiplexed ga...Laser absorption spectroscopy has proven to be an effective approach for gas sensing, which plays an important rolein the fields of military, industry, medicine and basic research. This paper presents a multiplexed gas sensing system basedon optical frequency comb (OFC) calibrated frequency-modulated continuous-wave (FMCW) tuning nonlinearity. Thesystem can be used for multi-parameter synchronous measurement of gas absorption spectrum and multiplexed opticalpath. Multi-channel parallel detection is realized by combining wavelength division multiplexing (WDM) and frequencydivision multiplexing (FDM) techniques. By introducing nonlinear optical crystals, broadband spectrum detection is simultaneouslyachieved over a bandwidth of hundreds of nanometers. An OFC with ultra-high frequency stability is used asthe frequency calibration source, which guarantees the measurement accuracy. The test samples involve H13C14N, C_(2)H_(2)and Rb vapor cells of varying densities and 5 parallel measurement experiments are designed. The results show that themeasurement accuracies of spectral absorption line and the optical path are 150 MHz and 20 m, respectively. The schemeoffers the advantages of multiplexed, multi-parameter, wide spectrum and high resolution detection, which can realize theidentification of multi-gas components and the high-precision inversion of absorption lines under different environments.The proposed sensor demonstrates great potential in the field of high-resolution absorption spectrum measurement for gassensing applications.展开更多
Optical frequency combbased Fourier transform spectroscopy has the features of broad spectral bandwidth,high sensitivity,andmultiplexed trace gas detection,which has valuable application potential in the fields of pre...Optical frequency combbased Fourier transform spectroscopy has the features of broad spectral bandwidth,high sensitivity,andmultiplexed trace gas detection,which has valuable application potential in the fields of precision spectroscopy and trace gas detection.Here,we report the development of a mid-infrared Fourier transform spectrometer based on an optical frequency comb combined with a Herriott-type multipass cell.Using this instrument,the broadband absorption spectra of several important molecules,including methane,acetylene,water molecules and nitrous oxide,are measured by near real-time data acquisition in the 2800-3500 cm^(-1)spectral region.The achieved minimum detectable absorption of the instrument is 4.4×10^(-8)cm^(-1)·Hz^(-1/2)per spectral element.Broadband spectra of H_(2)0 are fited using the Voigt profile multispectral fitting technique and the consistency of the concentration inversion is 1%.Our system also enables precise spectroscopic measurements,and it allows the determination of the spectral line positions and upper state constants of N_(2)O in the(0002)-(1000)band,with results in good agreement with those reported by Toth[Appl.Opt.30,5289(1991)].展开更多
Frequency-comb emission via high-order harmonic generation(HHG)provides an alternative method for the coherent vacuum ultraviolet(VUV)and extreme ultraviolet(XUV)radiation at ultrahigh repetition rates.In particular,t...Frequency-comb emission via high-order harmonic generation(HHG)provides an alternative method for the coherent vacuum ultraviolet(VUV)and extreme ultraviolet(XUV)radiation at ultrahigh repetition rates.In particular,the temporal and spectral features of the HHG were shown to carry profound insight into frequency-comb emission dynamics.Here we present an ab initio investigation of the temporal and spectral coherence of the frequency comb emitted in HHG of He atom driven by few-cycle pulse trains.We find that the emission of frequency combs features a destructive and constructive coherences caused by the phase interference of HHG,leading to suppression and enhancement of frequency-comb emission.The results reveal intriguing and substantially different nonlinear optical response behaviors for frequency-comb emission via HHG.The dynamical origin of frequency-comb emission is clarified by analyzing the phase coherence in HHG processes in detail.Our results provide fresh insight into the experimental realization of selective enhancement of frequency comb in the VUV–XUV regimes.展开更多
This paper presents a novel approach to improve aliasing rejection in comb-based decimation filters. The method is established on certain palindromic polynomials with all zeros on the unit circle and the sharpening te...This paper presents a novel approach to improve aliasing rejection in comb-based decimation filters. The method is established on certain palindromic polynomials with all zeros on the unit circle and the sharpening technique. As a result, aliasing rejection and the passband characteristic are improved. The method is illustrated with various examples and compared with the methods from the literature. .展开更多
Optical frequency comb with evenly spaced lines over a broad bandwidth has revolutionized the fields of optical metrology and spectroscopy.Here,we propose a fast interleaved dual-comb spectroscopy with sub-femtometer-...Optical frequency comb with evenly spaced lines over a broad bandwidth has revolutionized the fields of optical metrology and spectroscopy.Here,we propose a fast interleaved dual-comb spectroscopy with sub-femtometer-resolution and absolute frequency,in which two electro-optic frequency combs are swept.Electrically-modulated stabilized laser enables ultrahigh resolution of 0.16 fm(or 20 k Hz in optical frequency)and single-shot measurement in 90 ms.Total 20 million points are recorded spanning 3.2 nm(or 400 GHz)bandwidth,corresponding to a spectral sampling rate of 2.5×10^(8)points/s under Nyquist-limitation.Besides,considering the trade-off between the measurement time and spectral resolution,a fast single-shot measurement is also realized in 1.6 ms with 8 fm(or 1 MHz)resolution.We demonstrate the 25-averaged result with 30.6 d B spectral measurement signal-to-noise ratio(SNR)by reducing the filter bandwidth in demodulation.The results show great prospect for precise measurement with flexibly fast refresh time,high spectral resolution,and high SNR.展开更多
[Objective] The aim was to establish a rapid method for the determination of the content of total flavonoids in the honey comb. [Method] The content of total flavonoids weas determined based on samples including comb ...[Objective] The aim was to establish a rapid method for the determination of the content of total flavonoids in the honey comb. [Method] The content of total flavonoids weas determined based on samples including comb honey, propolis, royal jelly, linden tree honey, with a polyamide column chromatography by spectrophotometry at 360 nm wavelength. [Result] The recovery rate of the method was above 90%, and the variation coefficient was lower than 2%. Compared with the traditional method, this method has less reagent consumption, simple operation and so on.[Conclusion] The content of total flavonoids in comb honey was 14.97 mg/100 g, although is only 0.87% of the total flavone content in propolis. The contained total flavonoids at least doubled than that of others and comb honey is more valuable in the content of flavonoids.展开更多
The dropping scales is an important parameter for comber noil and combing quality. Because the rocking of the nipper shaft makes the nippers move backward and forward through a series of links, the original position o...The dropping scales is an important parameter for comber noil and combing quality. Because the rocking of the nipper shaft makes the nippers move backward and forward through a series of links, the original position of nipper frame is altered when changing the dropping scales, the other parameters of combing are changed accordingly. In this paper, the timing of opening-closing on nipper, the timing of cylinder’s combing, the timing of detaching-lapping and variation of nip pressure are calculated and their effects on combing are analyzed in different dropping scales on E7/6 comber.展开更多
A three-part comb decimator is presented in this paper, for the applications with severe requirements of circuit performance and frequency response. Based on the modified prime factorization method and multistage poly...A three-part comb decimator is presented in this paper, for the applications with severe requirements of circuit performance and frequency response. Based on the modified prime factorization method and multistage polyphase decomposition, an efficient non-recursive structure for the cascaded integrator-comb (CIC) decimation filter is derived. Utilizing this structure as the core part, the proposed comb decimator can not only loosen the decimation ratio's limitation, but also balance the tradeoff among the overall power consumption, circuit area and maximum speed. Further, to improve the frequency response of the comb decimator, a cos-prefilter is introduced as the preprocessing part for increasing the aliasing rejection, and an optimum sin-based filter is used as the compensation part for decreasing the passband droop.展开更多
We demonstrate an optical frequency comb based on an erbium-doped-fiber femtosecond laser with the nonlinear polarization evolution scheme. The repetition rate of the laser is about 209 MHz. By controlling an intra-ca...We demonstrate an optical frequency comb based on an erbium-doped-fiber femtosecond laser with the nonlinear polarization evolution scheme. The repetition rate of the laser is about 209 MHz. By controlling an intra-cavity electro- optic modulator and a piezo-transducer, the repetition rate can be stabilized with a high-bandwidth servo in a frequency range of 3 kHz, enabling long-term repetition rate phase-locking. The in-loop frequency stability of repetition rate is about 1.6× 10-13 in an integration time of 1 s, limited by the measurement system; and it is inversely proportional to integration time in the short term. Furthermore, using a common path f-2f interferometer, the carrier envelope offset frequency of the comb is obtained with a signal-to-noise ratio of 40 dB in a 3-MHz resolution bandwidth. Stabilized cartier envelope offset frequency exhibits a deviation of 0.6 mHz in an integration time of 1 s.展开更多
A laser frequency comb with several tens GHz level is demonstrated,based on a Yb-doped femtosecond fiber laser and two low-finesse Fabry-Perot cavities(FPCs) in series.The original 250-MHz mode-line-spacing of the s...A laser frequency comb with several tens GHz level is demonstrated,based on a Yb-doped femtosecond fiber laser and two low-finesse Fabry-Perot cavities(FPCs) in series.The original 250-MHz mode-line-spacing of the source comb is filtered to 4.75 GHz and 23.75 GHz,respectively.According to the multi-beam interferences theory of FPC,the side-mode suppression rate of FPC schemes is in good agreement with our own theoretical results from 27 dB of a single FPC to43 dB of paired FPCs.To maintain long-term stable operation and determine the absolute frequency mode number in the23.75-GHz comb,the Pound-Drever-Hall(PDH) locking technology is utilized.Such stable tens GHz frequency combs have important applications in calibrating astronomical spectrographs with high resolution.展开更多
Passively mode-locked fiber lasers emit femtosecond pulse trains with excellent short-term stability. The quantum-limited timing jitter of a free running femtosecond erbium-doped fiber laser working at room temperatur...Passively mode-locked fiber lasers emit femtosecond pulse trains with excellent short-term stability. The quantum-limited timing jitter of a free running femtosecond erbium-doped fiber laser working at room temperature is considerably below one femtosecond at high Fourier frequency. The ultrashort pulse train with ultralow timing jitter enables absolute time-of-flight measurements based on a dual-comb implementation, which is typically composed of a pair of optical frequency combs generated by femtosecond lasers. Dead-zone-free absolute distance measurement with sub-micrometer precision and kHz update rate has been routinely achieved with a dual-comb configuration, which is promising for a number of precision manufacturing applications, from large step-structure measurements prevalent in microelectronic profilometry to three coordinate measurements in large-scale aerospace manufacturing and shipbuilding. In this paper, we first review the sub-femtosecond precision timing jitter characterization methods and approaches for ultralow timing jitter mode-locked fiber laser design. Then, we provide an overview of the state-of-the-art dual-comb absolute ranging technology in terms of working principles, experimental implementations, and measurement precisions. Finally, we discuss the impact of quantum-limited timing jitter on the dual-comb ranging precision at a high update rate. The route to highprecision dual-comb range finder design based on ultralow jitter femtosecond fiber lasers is proposed.展开更多
基金support of the National Natural Sci-ence Foundation of China(NSFC)(62305373)the Strategic Priority Research Program of the Chinese Academy of Sciences(XDA1502040404,XDB2101040004).
文摘Optical frequency combs,as powerful tools for precision spectroscopy and research into optical frequency standards,have driven continuous progress and significant breakthroughs in applications such as time-frequency transfer,measurement of fundamental physical constants,and high-precision ranging,achieving a series of milestone results in ground-based environments.With the continuous maturation and evolution of femtosecond lasers and related technologies,optical frequency combs are moving from ground-based applications to astronomical and space-based applications,playing an increasingly important role in atomic clocks,exoplanet observations,gravitational wave measurements,and other areas.This paper,focusing on astronomical and space-based applications,reviews research progress on astronomical frequency combs,optical clock time-frequency networks,gravitational waves,dark matter measurement,dual-comb large-scale absolute ranging,and high-resolution atmospheric spectroscopy.With enhanced performance and their gradual application in the field of space-based research,optical frequency combs will undoubtedly provide more powerful support for astronomical science and cosmic exploration in the future.
基金the National Natural Science Foun-dation of China(Grant No.52375546)the National Key Research and Development Program of China(Grant No.2022YFF0705701).
文摘Laser absorption spectroscopy has proven to be an effective approach for gas sensing, which plays an important rolein the fields of military, industry, medicine and basic research. This paper presents a multiplexed gas sensing system basedon optical frequency comb (OFC) calibrated frequency-modulated continuous-wave (FMCW) tuning nonlinearity. Thesystem can be used for multi-parameter synchronous measurement of gas absorption spectrum and multiplexed opticalpath. Multi-channel parallel detection is realized by combining wavelength division multiplexing (WDM) and frequencydivision multiplexing (FDM) techniques. By introducing nonlinear optical crystals, broadband spectrum detection is simultaneouslyachieved over a bandwidth of hundreds of nanometers. An OFC with ultra-high frequency stability is used asthe frequency calibration source, which guarantees the measurement accuracy. The test samples involve H13C14N, C_(2)H_(2)and Rb vapor cells of varying densities and 5 parallel measurement experiments are designed. The results show that themeasurement accuracies of spectral absorption line and the optical path are 150 MHz and 20 m, respectively. The schemeoffers the advantages of multiplexed, multi-parameter, wide spectrum and high resolution detection, which can realize theidentification of multi-gas components and the high-precision inversion of absorption lines under different environments.The proposed sensor demonstrates great potential in the field of high-resolution absorption spectrum measurement for gassensing applications.
基金supported by the National Natural Science Foundation China(No.42022051,No.U21A2028)Youth Innovation Promotion Association of the Chinese Academy of Sciences(No.Y202089)the HFIPS Director's Fund(No.YZJJ202101,No.BJPY2023A02).
文摘Optical frequency combbased Fourier transform spectroscopy has the features of broad spectral bandwidth,high sensitivity,andmultiplexed trace gas detection,which has valuable application potential in the fields of precision spectroscopy and trace gas detection.Here,we report the development of a mid-infrared Fourier transform spectrometer based on an optical frequency comb combined with a Herriott-type multipass cell.Using this instrument,the broadband absorption spectra of several important molecules,including methane,acetylene,water molecules and nitrous oxide,are measured by near real-time data acquisition in the 2800-3500 cm^(-1)spectral region.The achieved minimum detectable absorption of the instrument is 4.4×10^(-8)cm^(-1)·Hz^(-1/2)per spectral element.Broadband spectra of H_(2)0 are fited using the Voigt profile multispectral fitting technique and the consistency of the concentration inversion is 1%.Our system also enables precise spectroscopic measurements,and it allows the determination of the spectral line positions and upper state constants of N_(2)O in the(0002)-(1000)band,with results in good agreement with those reported by Toth[Appl.Opt.30,5289(1991)].
基金the National Natural Science Foundation of China(Grant Nos.12074239 and 91850209)the Natural Science Foundation of Guangdong Province,China(Grant Nos.2020A1515010927 and 2020ST084)+1 种基金the Fund from the Department of Education of Guangdong Province,China(Grant Nos.2019KTSCX038 and 2020KCXTD012)the Fund from Shantou University(Grant No.NTF18030).
文摘Frequency-comb emission via high-order harmonic generation(HHG)provides an alternative method for the coherent vacuum ultraviolet(VUV)and extreme ultraviolet(XUV)radiation at ultrahigh repetition rates.In particular,the temporal and spectral features of the HHG were shown to carry profound insight into frequency-comb emission dynamics.Here we present an ab initio investigation of the temporal and spectral coherence of the frequency comb emitted in HHG of He atom driven by few-cycle pulse trains.We find that the emission of frequency combs features a destructive and constructive coherences caused by the phase interference of HHG,leading to suppression and enhancement of frequency-comb emission.The results reveal intriguing and substantially different nonlinear optical response behaviors for frequency-comb emission via HHG.The dynamical origin of frequency-comb emission is clarified by analyzing the phase coherence in HHG processes in detail.Our results provide fresh insight into the experimental realization of selective enhancement of frequency comb in the VUV–XUV regimes.
文摘This paper presents a novel approach to improve aliasing rejection in comb-based decimation filters. The method is established on certain palindromic polynomials with all zeros on the unit circle and the sharpening technique. As a result, aliasing rejection and the passband characteristic are improved. The method is illustrated with various examples and compared with the methods from the literature. .
基金funding from National Natural Science Foundation of China(NSFC)under Grant Nos.61775132,61735015,61620106015supported by the Major Key Project of Peng Cheng Laboratory(PCL)。
文摘Optical frequency comb with evenly spaced lines over a broad bandwidth has revolutionized the fields of optical metrology and spectroscopy.Here,we propose a fast interleaved dual-comb spectroscopy with sub-femtometer-resolution and absolute frequency,in which two electro-optic frequency combs are swept.Electrically-modulated stabilized laser enables ultrahigh resolution of 0.16 fm(or 20 k Hz in optical frequency)and single-shot measurement in 90 ms.Total 20 million points are recorded spanning 3.2 nm(or 400 GHz)bandwidth,corresponding to a spectral sampling rate of 2.5×10^(8)points/s under Nyquist-limitation.Besides,considering the trade-off between the measurement time and spectral resolution,a fast single-shot measurement is also realized in 1.6 ms with 8 fm(or 1 MHz)resolution.We demonstrate the 25-averaged result with 30.6 d B spectral measurement signal-to-noise ratio(SNR)by reducing the filter bandwidth in demodulation.The results show great prospect for precise measurement with flexibly fast refresh time,high spectral resolution,and high SNR.
基金Supported by Guangzhou Municipal Colleges and Universities with Research Base Project in 2014(14CXY07)Institute of Scientific Research Projects in 2014(LK14002)the Transverse Research Project in 2014(w14001)~~
文摘[Objective] The aim was to establish a rapid method for the determination of the content of total flavonoids in the honey comb. [Method] The content of total flavonoids weas determined based on samples including comb honey, propolis, royal jelly, linden tree honey, with a polyamide column chromatography by spectrophotometry at 360 nm wavelength. [Result] The recovery rate of the method was above 90%, and the variation coefficient was lower than 2%. Compared with the traditional method, this method has less reagent consumption, simple operation and so on.[Conclusion] The content of total flavonoids in comb honey was 14.97 mg/100 g, although is only 0.87% of the total flavone content in propolis. The contained total flavonoids at least doubled than that of others and comb honey is more valuable in the content of flavonoids.
文摘The dropping scales is an important parameter for comber noil and combing quality. Because the rocking of the nipper shaft makes the nippers move backward and forward through a series of links, the original position of nipper frame is altered when changing the dropping scales, the other parameters of combing are changed accordingly. In this paper, the timing of opening-closing on nipper, the timing of cylinder’s combing, the timing of detaching-lapping and variation of nip pressure are calculated and their effects on combing are analyzed in different dropping scales on E7/6 comber.
基金Supported by the China Postdoctoral Science Foundation (20080431379).
文摘A three-part comb decimator is presented in this paper, for the applications with severe requirements of circuit performance and frequency response. Based on the modified prime factorization method and multistage polyphase decomposition, an efficient non-recursive structure for the cascaded integrator-comb (CIC) decimation filter is derived. Utilizing this structure as the core part, the proposed comb decimator can not only loosen the decimation ratio's limitation, but also balance the tradeoff among the overall power consumption, circuit area and maximum speed. Further, to improve the frequency response of the comb decimator, a cos-prefilter is introduced as the preprocessing part for increasing the aliasing rejection, and an optimum sin-based filter is used as the compensation part for decreasing the passband droop.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.91336101 and 61127901)West Light Foundation of the Chinese Academy of Sciences(Grant No.2013ZD02)
文摘We demonstrate an optical frequency comb based on an erbium-doped-fiber femtosecond laser with the nonlinear polarization evolution scheme. The repetition rate of the laser is about 209 MHz. By controlling an intra-cavity electro- optic modulator and a piezo-transducer, the repetition rate can be stabilized with a high-bandwidth servo in a frequency range of 3 kHz, enabling long-term repetition rate phase-locking. The in-loop frequency stability of repetition rate is about 1.6× 10-13 in an integration time of 1 s, limited by the measurement system; and it is inversely proportional to integration time in the short term. Furthermore, using a common path f-2f interferometer, the carrier envelope offset frequency of the comb is obtained with a signal-to-noise ratio of 40 dB in a 3-MHz resolution bandwidth. Stabilized cartier envelope offset frequency exhibits a deviation of 0.6 mHz in an integration time of 1 s.
基金supported by the National Basic Research Program of China(Grant No.2012CB821304)the National Natural Science Foundation of China(Grant Nos.11078022 and 61378040)
文摘A laser frequency comb with several tens GHz level is demonstrated,based on a Yb-doped femtosecond fiber laser and two low-finesse Fabry-Perot cavities(FPCs) in series.The original 250-MHz mode-line-spacing of the source comb is filtered to 4.75 GHz and 23.75 GHz,respectively.According to the multi-beam interferences theory of FPC,the side-mode suppression rate of FPC schemes is in good agreement with our own theoretical results from 27 dB of a single FPC to43 dB of paired FPCs.To maintain long-term stable operation and determine the absolute frequency mode number in the23.75-GHz comb,the Pound-Drever-Hall(PDH) locking technology is utilized.Such stable tens GHz frequency combs have important applications in calibrating astronomical spectrographs with high resolution.
基金supported by National Natural Science Foundation of China (Grant Nos.61475162,61675150,and 61535009)Tianjin Natural Science Foundation (Grant No.18JCYBJC16900)Tianjin Research Program of Application Foundation and Advanced Technology (Grant No.17JCJQJC43500)
文摘Passively mode-locked fiber lasers emit femtosecond pulse trains with excellent short-term stability. The quantum-limited timing jitter of a free running femtosecond erbium-doped fiber laser working at room temperature is considerably below one femtosecond at high Fourier frequency. The ultrashort pulse train with ultralow timing jitter enables absolute time-of-flight measurements based on a dual-comb implementation, which is typically composed of a pair of optical frequency combs generated by femtosecond lasers. Dead-zone-free absolute distance measurement with sub-micrometer precision and kHz update rate has been routinely achieved with a dual-comb configuration, which is promising for a number of precision manufacturing applications, from large step-structure measurements prevalent in microelectronic profilometry to three coordinate measurements in large-scale aerospace manufacturing and shipbuilding. In this paper, we first review the sub-femtosecond precision timing jitter characterization methods and approaches for ultralow timing jitter mode-locked fiber laser design. Then, we provide an overview of the state-of-the-art dual-comb absolute ranging technology in terms of working principles, experimental implementations, and measurement precisions. Finally, we discuss the impact of quantum-limited timing jitter on the dual-comb ranging precision at a high update rate. The route to highprecision dual-comb range finder design based on ultralow jitter femtosecond fiber lasers is proposed.