The clustered regularly interspaced short palindromic repeats(CRISPR)–CRISPR-associated protein(Cas) system has been widely used for genome editing. In this system, the cytosine base editor(CBE) and adenine base edit...The clustered regularly interspaced short palindromic repeats(CRISPR)–CRISPR-associated protein(Cas) system has been widely used for genome editing. In this system, the cytosine base editor(CBE) and adenine base editor(ABE) allow generating precise and irreversible base mutations in a programmable manner and have been used in many different types of cells and organisms. However, their applications are limited by low editing efficiency at certain genomic target sites or at specific target cytosine(C) or adenine(A) residues. Using a strategy of combining optimized synergistic core components, we developed a new multiplex super-assembled ABE(sABE) in rice that showed higher base-editing efficiency than previously developed ABEs. We also designed a new type of nuclear localization signal(NLS) comprising a FLAG epitope tag with four copies of a codon-optimized NLS(F4NLS^(r2)) to generate another ABE named F4NLS-sABE. This new NLS increased editing efficiency or edited additional A at several target sites. A new multiplex super-assembled CBE(sCBE) and F4NLS^(r2) involved F4NLS-sCBE were also created using the same strategy. F4NLS-sCBE was proven to be much more efficient than sCBE in rice. These optimized base editors will serve as powerful genome-editing tools for basic research or molecular breeding in rice and will provide a reference for the development of superior editing tools for other plants or animals.展开更多
We demonstrate the generation of supercontinuum (SC) of over 1350 nm by injecting 790-nm, 15-fs, 74-MHz optical pulses into a 183-mm-long microstructured fiber with combination core and random cladding. The maximum to...We demonstrate the generation of supercontinuum (SC) of over 1350 nm by injecting 790-nm, 15-fs, 74-MHz optical pulses into a 183-mm-long microstructured fiber with combination core and random cladding. The maximum total power of SC is 73 mW with 290-mW pump power from 40x microscope objective. The wavelength and power ranging in SC as well as the polarization states and waveguide modes of the visible light can be tuned by adjusting the input end of MF.In particular, white light has been observed. To our knowledge, this is the first report of tunable properties in SC generation process using microstructured fiber with combination core and random cladding.展开更多
基金supported by the Beijing Scholars Program[BSP041]。
文摘The clustered regularly interspaced short palindromic repeats(CRISPR)–CRISPR-associated protein(Cas) system has been widely used for genome editing. In this system, the cytosine base editor(CBE) and adenine base editor(ABE) allow generating precise and irreversible base mutations in a programmable manner and have been used in many different types of cells and organisms. However, their applications are limited by low editing efficiency at certain genomic target sites or at specific target cytosine(C) or adenine(A) residues. Using a strategy of combining optimized synergistic core components, we developed a new multiplex super-assembled ABE(sABE) in rice that showed higher base-editing efficiency than previously developed ABEs. We also designed a new type of nuclear localization signal(NLS) comprising a FLAG epitope tag with four copies of a codon-optimized NLS(F4NLS^(r2)) to generate another ABE named F4NLS-sABE. This new NLS increased editing efficiency or edited additional A at several target sites. A new multiplex super-assembled CBE(sCBE) and F4NLS^(r2) involved F4NLS-sCBE were also created using the same strategy. F4NLS-sCBE was proven to be much more efficient than sCBE in rice. These optimized base editors will serve as powerful genome-editing tools for basic research or molecular breeding in rice and will provide a reference for the development of superior editing tools for other plants or animals.
基金This work was supPorted by the Henan Cultivatlon Project for University Innovatlon Thlents.
文摘We demonstrate the generation of supercontinuum (SC) of over 1350 nm by injecting 790-nm, 15-fs, 74-MHz optical pulses into a 183-mm-long microstructured fiber with combination core and random cladding. The maximum total power of SC is 73 mW with 290-mW pump power from 40x microscope objective. The wavelength and power ranging in SC as well as the polarization states and waveguide modes of the visible light can be tuned by adjusting the input end of MF.In particular, white light has been observed. To our knowledge, this is the first report of tunable properties in SC generation process using microstructured fiber with combination core and random cladding.