期刊文献+
共找到11篇文章
< 1 >
每页显示 20 50 100
Combustion mechanism and control approaches of underground coal fires:a review 被引量:3
1
作者 Yuntao Liang Yalan Yang +2 位作者 Sida Guo Fuchao Tian Shaofeng Wang 《International Journal of Coal Science & Technology》 EI CAS CSCD 2023年第2期58-82,共25页
With the large-scale mining of coal resources,the huge economic losses and environmental problems caused by underground coal fires have become increasingly prominent,and the research on the status quo and response str... With the large-scale mining of coal resources,the huge economic losses and environmental problems caused by underground coal fires have become increasingly prominent,and the research on the status quo and response strategies of underground coal fires is of great significance to accelerate the green prevention and control of coal fires,energy conservation and emission reduction.In this paper,we summarized and sorted out the research status of underground coal fires,focused on the theoretical and technical issues such as underground coal fire combustion mechanism,multiphysics coupling effect of coal fire combustion,fire prevention and extinguishing technology for underground coal fires,and beneficial utilization technology,and described the latest research progress of the prevention and control for underground coal fire hazards.Finally,the key research problems in the field of underground coal fire hazards prevention and control were proposed in the direction of the basic theory,technology research,comprehensive management and utilization,with a view to providing ideas and solutions for the management of underground coal fires. 展开更多
关键词 Underground coal fire combustion mechanism Multiphysics coupling effect Disaster prevention and control Turning harm into benefit Response strategy
下载PDF
Combustion mechanism of fluorinated organic compound-modified nano-aluminum composite particles:Towards experimental and theoretical investigations 被引量:1
2
作者 Siyi ZHANG Yunlan SUN +2 位作者 Jiuyu CHEN Tao SUN Baozhong ZHU 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2023年第2期334-349,共16页
Fluorinated Organic Compounds(FOCs)are commonly used as modifiers for Aluminum(Al)powder to improve its ignition,combustion,and agglomeration characteristics.However,the effects of FOCs on combustion and inhibition me... Fluorinated Organic Compounds(FOCs)are commonly used as modifiers for Aluminum(Al)powder to improve its ignition,combustion,and agglomeration characteristics.However,the effects of FOCs on combustion and inhibition mechanisms of agglomeration of Al powder are not well understood.In this paper,based on the experimental study of Fluorinated Graphite(FG)-modified Al matrix composite particles,the combustion and aggregation inhibition mechanisms of FOCs on Al particles were studied by the quantum chemical calculation at B3LYP/6-311+G(d,P)and G3//B3LYP/6-311+G(d,p)levels.The flame behavior and single particle burning behavior of FG-modified samples were compared through ignition experiments,and the characteristic spectra of Al related oxides of different samples in the initial ignition stage were captured.It is found that FG increases the burning intensity of Al composite samples significantly,while it decreases the emission intensity of Al secondary oxides.Quantum chemical calculation results show that the thermal decomposition intermediates of FOCs,namely C_(2)F_(4),can react with AlO and Al_(2)O,which weakens the characteristic emission intensity of AlO and Al_(2)O in the sample,and thus inhibits the formation of Al_(2)O_(3)in the combustion process.These results contribute to enriching the combustion dynamics model of Al-FOCs reaction system. 展开更多
关键词 Fluorinated organic compounds nAl combustion mechanism Agglomeration inhibition Reaction kinetics
原文传递
Combustion mechanism development and CFD simulation for the prediction of soot emission during flaring 被引量:1
3
作者 Anan Wang Helen H. Lou +6 位作者 Daniel Chen Anfeng Yu Wenyi Dang Xianchang Li Christopher Martin Vijaya Damodara Ajit Patki 《Frontiers of Chemical Science and Engineering》 SCIE EI CAS CSCD 2016年第4期459-471,共13页
Industrial Flares are important safety devices to bum off the unwanted gas during process startup, shutdown, or upset. However, flaring, especially the associated smoke, is a symbol of emissions from refineries, oil g... Industrial Flares are important safety devices to bum off the unwanted gas during process startup, shutdown, or upset. However, flaring, especially the associated smoke, is a symbol of emissions from refineries, oil gas fields, and chemical processing plants. How to simultaneously achieve high combustion efficiency (CE) and low soot emission is an important issue. Soot emissions are influenced by many factors. Flare operators tend to over-steam or over-air to suppress smoke, which results in low CE. How to achieve optimal flare performance remains a question to the industry and the regulatory agencies. In this paper, regulations in the US regarding flaring were reviewed. In order to determine the optimal operating window for the flare, different combus- tion mechanisms related to soot emissions were summar- ized. A new combustion mechanism (Vsoot) for predicting soot emissions was developed and validated against experimental data. Computational fluid dynamic (CFD) models combined with Vsoot combustion mechanism were developed to simulate the flaring events. It was observed that simulation results agree well with experimental data. 展开更多
关键词 FLARE soot emission combustion mechanism CFD simulation
原文传递
Burning surface formation mechanism of laser-controlled 5-aminotetrazole propellant
4
作者 Nian-bai He Rui-qi Shen +4 位作者 Luigi T.DeLuca Li-zhi Wu Wei Zhang Ying-hua Ye Yue-ting Wang 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2023年第7期48-59,共12页
As an innovative propulsion technique, combustion mechanism of laser-augmented chemical propulsion has still to be ascertained. Benefiting from high nitrogen content and thermal stability, 5-aminotetrazole is a suitab... As an innovative propulsion technique, combustion mechanism of laser-augmented chemical propulsion has still to be ascertained. Benefiting from high nitrogen content and thermal stability, 5-aminotetrazole is a suitable ingredient for LACP. Under a flowing nitrogen environment, two kinds of unique burning surfaces were observed to occur for 5-ATZ, used as a single reacting propellant ingredient with the addition of carbon, under laser ablation. Both surfaces are hollow structures and differ by the possible presence of edges. Using micro computed tomography, the 3D perspective structures of both surfaces were revealed. Resorting to various characterization methods, a unified formation mechanism for both surfaces is proposed. This mechanism specifically applies to laser ablation, but could be crucial to common burning mechanisms in LACP. 展开更多
关键词 5-Aminotetrazole(5-ATZ) Laser-augmented chemical propulsion (LACP) combustion mechanism Burning surface Micro computed tomography(MicroCT)
下载PDF
Deflagration characteristics of freely propagating flames in magnesium hydride dust clouds 被引量:1
5
作者 Qiwei Zhang Yangfan Cheng +2 位作者 Beibei Zhang Danyi Li Zhaowu Shen 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第1期471-483,共13页
The flame propagation processes of MgH_(2)dust clouds with four different particle sizes were recorded by a high-speed camera.The dynamic flame temperature distributions of MgH_(2)dust clouds were reconstructed by the... The flame propagation processes of MgH_(2)dust clouds with four different particle sizes were recorded by a high-speed camera.The dynamic flame temperature distributions of MgH_(2)dust clouds were reconstructed by the two-color pyrometer technique,and the chemical composition of solid combustion residues were analyzed.The experimental results showed that the average flame propagation velocities of 23μm,40μm,60μm and 103μm MgH_(2)dust clouds in the stable propagation stage were 3.7 m/s,2.8 m/s,2.1 m/s and 0.9 m/s,respectively.The dust clouds with smaller particle sizes had faster flame propagation velocity and stronger oscillation intensity,and their flame temperature distributions were more even and the temperature gradients were smaller.The flame structures of MgH_(2)dust clouds were significantly affected by the particle sinking velocity,and the combustion processes were accompanied by micro-explosion of particles.The falling velocities of 23μm and 40μm MgH_(2)particles were 2.24 cm/s and 6.71 cm/s,respectively.While the falling velocities of 60μm and 103μm MgH_(2)particles were as high as 15.07 cm/s and 44.42 cm/s,respectively,leading to a more rapid downward development and irregular shape of the flame.Furthermore,the dehydrogenation reaction had a significant effect on the combustion performance of MgH_(2)dust.The combustion of H_(2)enhanced the ignition and combustion characteristics of MgH_(2)dust,resulting in a much higher explosion power than the pure Mg dust.The micro-structure characteristics and combustion residues composition analysis of MgH_(2)dust indicated that the combustion control mechanism of MgH_(2)dust flame was mainly the heterogeneous reaction,which was affected by the dehydrogenation reaction. 展开更多
关键词 Magnesium hydride dust Flame combustion mechanism Particle size Dust explosion Two-color pyrometer
下载PDF
The surface activation of boron to improve ignition and combustion characteristic 被引量:2
6
作者 Jian Wang Jun Wang +2 位作者 Yaofeng Mao Rufang Peng Fude Nie 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2022年第9期1679-1687,共9页
Boron is a very promising and highly attractive fuel because of high calorific value. However, the practical applications in explosives and propellants of boron have been limited by long ignition delay time and low co... Boron is a very promising and highly attractive fuel because of high calorific value. However, the practical applications in explosives and propellants of boron have been limited by long ignition delay time and low combustion efficiency. Herein, nano-Al and graphene fluoride(GF) as surface activated materials are employed to coat boron(B) particles to improve ignition and combustion performance. The reaction heat of nano-Al coated B/KNO_(3)and GF coated B/KNO_(3)are 1116.83 J/g and 862.69 J/g, respectively, which are higher than that of pure B/KNO_(3)(823.39 J/g). The ignition delay time of B/KNO_(3)could be reduced through nano-Al coating. The shortest ignition delay time is only 75 ms for B coated with nano-Al of 8 wt%, which is much shorter than that of pure B/KNO_(3)(109 ms). However, the ignition delay time of B/KNOcoated with GF has been increased from 109 to 187 ms. B coated with GF and nano-Al shown significantly influence on the pressure output and flame structure of B/KNO_(3). Furthermore, the effects of B/O ratios on the pressure output and ignition delay time have been further fully studied. For B/KNO_(3)coated with nano-Al and GF, the highest pressures are 88 KPa and 59 KPa for B/O ratio of 4:6, and the minimum ignition delay time are 94 ms and 148 ms for B/O ratio of 7:3. Based on the above results, the reaction process of boron coated with GF and nano-Al has been proposed to understand combustion mechanism. 展开更多
关键词 BORON Surface activation IGNITION Pressure output combustion mechanism
下载PDF
Exploring the methane combustion reaction: A theoretical contribution
7
作者 彭亚 蒋仲安 陈举师 《Chinese Physics B》 SCIE EI CAS CSCD 2018年第2期334-343,共10页
This paper represents an attempt to extend the mechanisms of reactions and kinetics of a methane combustion reaction.Three saddle points(SPs) are identified in the reaction CH_4+ O(~3P) → OH + CH_3 using the co... This paper represents an attempt to extend the mechanisms of reactions and kinetics of a methane combustion reaction.Three saddle points(SPs) are identified in the reaction CH_4+ O(~3P) → OH + CH_3 using the complete active space selfconsistent field and the multireference configuration interaction methods with a proper active space. Our calculations give a fairly accurate description of the regions around the twin first-order SPs(~3A' and ~3A〞) along the direction of O(~3P) attacking a near-collinear H–CH_3. One second-order SP^(2nd)(~3E) between the above twin SPs is the result of the C_(3v) symmetry Jahn–Teller coupling within the branching space. Further kinetic calculations are performed with the canonical unified statistical theory method with the temperature ranging from 298 K to 1000 K. The rate constants are also reported. The present work reveals the reaction mechanism of hydrogen-abstraction by the O(~3P) from methane, and develops a better understanding for the role of SPs. In addition, a comparison of the reactions of O(~3P) with methane through different channels allows a molecule-level discussion of the reactivity and mechanism of the title reaction. 展开更多
关键词 combustion reaction reaction mechanism rate constant saddle point
下载PDF
Numerical study of effects of hydrogen addition on methane combustion behaviors
8
作者 Dian-yu E Ling-yi Weng +3 位作者 Guang-wu Tang Jing Li Guang-chao Wei Jia-xin Cui 《Journal of Iron and Steel Research(International)》 SCIE EI CAS CSCD 2023年第11期2173-2185,共13页
The methane combustion with hydrogen addition can effectively reduce carbon emissions in the iron and steel making industry,while the combustion mechanism is still poorly understood.The oxy-fuel combustion of methane ... The methane combustion with hydrogen addition can effectively reduce carbon emissions in the iron and steel making industry,while the combustion mechanism is still poorly understood.The oxy-fuel combustion of methane with hydrogen addition in a 0.8 MW oxy-natural gas combustion experimental furnace was numerically studied to investigate six different combustion mechanisms.The results show that the 28-step chemical reaction mechanism is the optimal recommendation for the simulation balancing the numerical accuracy and computational expense.As the hydrogen enrichment increases in fuel,the highest flame temperature increases.Consequently,the chemical reaction accelerates with enlarging the peak of the highest flame temperature and intermediate OH radicals.When the hydrogen enrichment reaches 75 vol.%,the flame front is the farthest,and the flame high-temperature zone occupies the largest proportion corresponding to the most vigorous chemical reactions in the same oxygen supply. 展开更多
关键词 Oxy-fuel combustion HYDROGEN combustion mechanism Flame temperature SIMULATION MODELING
原文传递
Experimental study on combustion characteristics of Chinese RP-3 kerosene 被引量:9
9
作者 Ma Hongan Xie Maozhao +1 位作者 Zeng Wen Chen Baodong 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2016年第2期375-385,共11页
In order to illustrate the combustion characteristics of RP-3 kerosene which is widely used in Chinese aero-engines, the combustion characteristics of RP-3 kerosene were experimentally inves- tigated in a constant vol... In order to illustrate the combustion characteristics of RP-3 kerosene which is widely used in Chinese aero-engines, the combustion characteristics of RP-3 kerosene were experimentally inves- tigated in a constant volume combustion chamber. The experiments were performed at four different pressures of 0.1 MPa, 0.3 MPa, 0.5 MPa and 0.7 MPa, and three different temperatures of 390 K, 420 K and 450 K, and over the equivalence ratio range of 0.6-1.6. Furthermore, the laminar combus- tion speeds of a surrogate fuel for RP-3 kerosene were simulated under certain conditions. The results show that increasing the initial temperature or decreasing the initial pressure causes an increase in the laminar combustion speed of RP-3 kerosene. With the equivalence ratio increasing from 0.6 to 1.6, the laminar combustion speed increases initially and then decreases gradually. The highest laminar combustion speed is measured under fuel rich condition (the equivalence ratio is 1.2). At the same time, the Markstein length shows the same changing trend as the laminar com- bustion speed with modification of the initial pressure. Increasing the initial pressure will increase the instability of the flame front, which is established by decreased Markstein length. However, different from the effects of the initial temperature and equivalence ratio on the laminar combustion speed, increasing the equivalence ratio will lead to a decrease in the Markstein length and the stability of the flame front, and the effect of the initial temperature on the Markstein length is unclear. Further- more, the simulated laminar combustion speeds of the surrogate fuel agree with the corresponding experimental datas of RP-3 kerosene within ~10% deviation under certain conditions. 展开更多
关键词 combustion mechanism combustion stability Laminar combustion speed Markstein length RP-3 kerosene
原文传递
Large-scale synthesis of hollow titania spheres via flame combustion 被引量:3
10
作者 Jie Liu Yanjie Hu Feng Gu Chunzhong Li 《Particuology》 SCIE EI CAS CSCD 2011年第6期632-636,共5页
A one-step method for continuous large-scale synthesis of well-defined hollow titania spheres was established by feeding titanium tetrachloride mixed with ethanol vapor to a facile diffusion flame. A mixture of TiCl4 ... A one-step method for continuous large-scale synthesis of well-defined hollow titania spheres was established by feeding titanium tetrachloride mixed with ethanol vapor to a facile diffusion flame. A mixture of TiCl4 and C2H5OH vapor was transported at 100 m/s into a flame reactor and condensed into mesoscale droplets due to Joule-Thomson cooling and the entrainment of cool gases into the expanding high-speed jet. Hollow crystalline TiO2 spheres with good thermal stability were formed after the hydrolysis of TiCl4 in the H2/air flame at about 1500℃. Structural characterization indicates that the hollow spheres, with uniform diameter of 300 nm and shell thickness of 35 rim, consist of 20-30 nm TiO2 nanocrystallites. A formation mechanism of the hollow spheres was proposed, involving the competition between chemical reaction and diffusion during the flame process. The present study provides a new pathway for continuous and large-scale engineering of hollow nanomaterials. 展开更多
关键词 Flame combustion Hollow spheres Titania Formation mechanism Large-scale
原文传递
Synthesis of ZrC Nanoparticles in the ZrO_2–Mg–C–Fe System Through Mechanically Activated Self-Propagating High-Temperature Synthesis
11
作者 Abdollah Hajalilou Mansor Hashim +3 位作者 Halimah Mohamed kamari Kazem Javadi Samikannu Kanagesan Mohammad Parastegari 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2014年第6期1144-1151,共8页
ZrC nanoparticles in the matrix of Fe were produced by the mechanically activated self-propagating hightemperature method using ZrO2/C/Mg/Fe powder mixtures. The effects of milling time, Fe content, and combustion tem... ZrC nanoparticles in the matrix of Fe were produced by the mechanically activated self-propagating hightemperature method using ZrO2/C/Mg/Fe powder mixtures. The effects of milling time, Fe content, and combustion temperature as well as the formation route for synthesizing ZrC powder particles were studied. The samples were characterized by XRD, SEM, TEM, and DTA. The XRD results revealed that, after 18 h of mechanical activation, ZrO2/ZC/Mg/Fe reacted with the self-propagating combustion(SHS) mode at 870 °C producing the ZrC–Fe nanocomposite. It was also found that both mechanical activation and Fe content played key roles in the ZrC synthesis temperature. With a Fe content of(5–40) wt%, the SHS reaction proceeded favorably and both the ZrC formation temperature and the adiabatic temperature(Tad) decreased. The Mg O content was removed from the final products using a leaching test process by dissolving in hydrochloric and acetic acids. 展开更多
关键词 Mechanical activation(MA) combustion synthesis Fe–ZrC composite Leaching process
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部