期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
A back analysis of the temperature field in the combustion volume space during underground coal gasification 被引量:3
1
作者 Chen Liang Hou Chaohu +1 位作者 Chen Jiansheng Xu Jiting 《Mining Science and Technology》 EI CAS 2011年第4期581-585,共5页
The exact shape and size of the gasification channel during underground coal gasification(UGC) are of vital importance for the safety and stability of the upper parts of the geological formation.In practice existing g... The exact shape and size of the gasification channel during underground coal gasification(UGC) are of vital importance for the safety and stability of the upper parts of the geological formation.In practice existing geological measurements are insufficient to obtain such information because the coal seam is typically deeply buried and the geological conditions are often complex.This paper introduces a cylindrical model for the gasification channel.The rock and soil masses are assumed to be homogeneous and isotropic and the effect of seepage on the temperature field was neglected.The theory of heat conduction was used to write the equation predicting the temperature field around the gasification channel.The idea of an excess temperature was introduced to solve the equations.Applying this model to UCG in the field for an influence radius,r,of 70 m gave the model parameters,u1,2,3...,of 2.4,5.5,8.7...By adjusting the radius(2,4,or 6 m) reasonable temperatures of the gasification channel were found for 4 m.The temperature distribution in the vertical direction,and the combustion volume,were also calculated.Comparison to field measurements shows that the results obtained from the proposed model are very close to practice. 展开更多
关键词 Underground coal gasification Gasification channel Temperature field combustion space areaBack analysis
下载PDF
Performance evaluation on field synergy and composite regeneration by coupling cerium-based additive and microwave for a diesel particulate filter 被引量:5
2
作者 左青松 鄂加强 +3 位作者 龚金科 D.M.Zhang 陈韬 贾国海 《Journal of Central South University》 SCIE EI CAS 2014年第12期4599-4606,共8页
In order to reveal the mechanics of composite regeneration by coupling cerium-based additive and microwave for a diesel particulate filter, a composite regeneration model by coupling cerium-based additive and microwav... In order to reveal the mechanics of composite regeneration by coupling cerium-based additive and microwave for a diesel particulate filter, a composite regeneration model by coupling cerium-based additive and microwave for a diesel particulate filter was established based on field synergy theory. Performance evaluation on field synergy and composite regeneration of the diesel particulate filter was conducted by using the vortex crushing combustion and field synergy mathematical models. The results show that the peak temperature of the particulate filter body reaches 1180-1190 K when the regeneration time is 175 s, and there are optimal coordination degree between the velocity vector and temperature gradient of the filter body and the maximum ratio0.56-0.60 of the best burning regeneration region is obtained. Accordingly, the largest regeneration combustion rate inside the particulate filter body and the highest regeneration efficiency at the moment are achieved. 展开更多
关键词 particulate filter particulate matter combustion numerical simulation field synergy
下载PDF
Effect of methane-hydrogen mixtures on flow and combustion of coherent jets 被引量:2
3
作者 Ting Cheng Rong Zhu Kai Dong 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2017年第11期1143-1151,共9页
Coherent jets are widely used in electric are furnace (EAF) steelmaking to increase the oxygen utilization and chemical reaction rates. However, the influence of fuel gas combustion on jet behavior is not fully unde... Coherent jets are widely used in electric are furnace (EAF) steelmaking to increase the oxygen utilization and chemical reaction rates. However, the influence of fuel gas combustion on jet behavior is not fully understood yet. The flow and combustion characteristics of a coherent jet were thus investigated at steelmaking temperature using Fluent software, and a detailed chemical kinetic reaction mecha- nism was used in the combustion reaction model. The axial velocity and total temperature of the supersonic jet were measured via hot state experiments. The simulation results were compared with the experimental data and the empirical jet model proposed by Ito and Muchi and good consistency was obtained. The research results indicated that the potential core length of the coherent jet can be prolonged by optimizing the combustion effect of the fuel gas. Besides, the behavior of the supersonic jet in the subsonic section was also investigated, as it is an important factor for controlling the position of the oxygen lance. The investigation indicated that the attenuation of the coherent jet is more notable than that of the conventional jet in the subsonic section. 展开更多
关键词 Supersonic jet Numerical simulation Mixed fuel gas Flow field combustion characteristic
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部