期刊文献+
共找到43篇文章
< 1 2 3 >
每页显示 20 50 100
Estimating the Operation Status of Steam Cracking Furnace Using Numerical Simulation with Combustion Models 被引量:3
1
作者 Zhou Xianfeng Yang Yuanyi +2 位作者 Wang Guoqing Zhang Lijun Liu Yi 《China Petroleum Processing & Petrochemical Technology》 SCIE CAS 2012年第4期52-63,共12页
An accurate and complete geometric model was constructed to simulate the combustion, flow and temperature environment in the radiant section of the steam cracking furnace. Simulation of flow and radiation status has u... An accurate and complete geometric model was constructed to simulate the combustion, flow and temperature environment in the radiant section of the steam cracking furnace. Simulation of flow and radiation status has utilized the standard k-ε model and P1 model. The finite-rate/eddy-dissipation (finite-rate/ED) combustion model and non-premixed combustion model were both used to simulate accurately the combustion and the operation status of the steam cracking furnace. Three different surfaces of the steam cracking furnace were obtained from the simulation, namely:the flue gas temperature field of the entrance surface in long flame burners, the central surface location of tubes, and the crossover section surface. Detailed information on the flue gas temperature and the mass concentration fraction of these different surfaces in the steam cracking furnace can also be obtained by the simulation. This paper analyzed and compared the simulation results with the two combustion models, estimated the operation status of the steam cracking furnace, and reported that the finite-rate/ED model is appropriate to simulate the steam cracking furnace by comparing key simulation data with actual test data. This work has also provided a theoretical basis for simulating and operating the steam cracking furnace. 展开更多
关键词 steam cracking furnace operation status combustion model numerical simulation flue gas
下载PDF
Riemann Problems for Three-dimensional Combustion Models
2
作者 Kai HU Gao-wei CAO Xiao-zhou YANG 《Acta Mathematicae Applicatae Sinica》 SCIE CSCD 2014年第2期321-346,共26页
We investigate Chapman-Jouguet models in three-dimensional space by means of generalized char- acteristic analysis. The interaction of detonation, shock waves and contact discontinuity is discussed intensively in this... We investigate Chapman-Jouguet models in three-dimensional space by means of generalized char- acteristic analysis. The interaction of detonation, shock waves and contact discontinuity is discussed intensively in this paper. If contact discontinuity appears, the structure of global solutions becomes complex. We deal with this problem when strength of detonation is small. 展开更多
关键词 combustion models generalized analysis self-similar solution
原文传递
A CombustionModel for Explosive Charge Affected by a Bottom Gap in the Launch Environment
3
作者 ShiboWu Weidong Chen +4 位作者 Jingxin Ma Lan Liu Shengzhuo Lu Honglin Meng Xiquan Song 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第2期1207-1236,共30页
Launch safety of explosive charges has become an urgent problem to be solved by all countries in the world aslaunch situation of ammunition becomes consistentlyworse.However, the existing numericalmodels have differen... Launch safety of explosive charges has become an urgent problem to be solved by all countries in the world aslaunch situation of ammunition becomes consistentlyworse.However, the existing numericalmodels have differentdefects. This paper formulates an efficient computational model of the combustion of an explosive charge affectedby a bottom gap in the launch environment in the context of the material point method. The current temperatureis computed accurately from the heat balance equation, and different physical states of the explosive charges areconsidered through various equations of state. Microcracks in the explosive charges are described with respectto the viscoelastic statistical crackmechanics (Visco–SCRAM) model. Themethod for calculating the temperatureat the bottomof the explosive charge with respect to the bottomgap is described. Based on this combustionmodel,the temperature history of a Composition B (COMB) explosive charge in the presence of a bottom gap is obtainedduring the launch process of a 155-mm artillery. The simulation results show that the bottom gap thickness shouldbe no greater than 0.039 cm to ensure the safety of the COM B explosive charge in the launch environment. Thisconclusion is consistent with previous results and verifies the correctness of the proposed model. Ultimately, thispaper derives amathematical expression for themaximumtemperature of the COMB explosive chargewith respectto the bottomgap thickness (over the range of 0.00–0.039 cm), and establishes a quantitative evaluationmethod forthe launch safety of explosive charges.The research results provide some guidance for the assessment and detectionof explosive charge safety in complex launch environments. 展开更多
关键词 combustion model explosive charge safety launch environment bottom gap TEMPERATURE
下载PDF
A Model of Steady-State Convective Combustion of Micropore Propellants 被引量:2
4
作者 王伯羲 《Journal of Beijing Institute of Technology》 EI CAS 1998年第1期107-112,共6页
Aim To develop a physical and mathematical model related to micropore para- meters of steady-state convective combustion of micropore propellants(MPP). Methods The micropore parameters were measured by WXT-88 mage ana... Aim To develop a physical and mathematical model related to micropore para- meters of steady-state convective combustion of micropore propellants(MPP). Methods The micropore parameters were measured by WXT-88 mage analysis apparatus and the convective combustion characteristic of MPP was measured by a large volume closed bomb, respectively. Rasults Statistical physical model of burning in the micropore and granular burning were developed. The burning rate equation of steady-state convective combustion of MPP was obtained. Conclusions This model correlates the convective burning rate with micropores para- meters for the first time,and the calculating values of convective burning rate are in agreement with test results.The model also can be used to estimate the effects of microporous parame- ters, basic mass burning rate, MPP density and pressure in combustion chamber on the convective combustion characteristics of MPP. 展开更多
关键词 micropore propellant (MPP) convective burning rate combustion model micropore parameters
下载PDF
DYNAMICS MODEL AND SIMULATION OF FLAT VALVE SYSTEM OF INTERNAL COMBUSTION WATER PUMP 被引量:39
5
作者 Zhang Hongxin Zhang Tiezhu +2 位作者 Wang Yushun Zhao Hong Huo Wei 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2005年第3期411-414,共4页
The dynamics differential equations are constructed, and the initial conditions are also given. Simulation shows the following conclusions: The water pressure in cylinder has great instantaneous pulsation and phase s... The dynamics differential equations are constructed, and the initial conditions are also given. Simulation shows the following conclusions: The water pressure in cylinder has great instantaneous pulsation and phase step when outlet valve or inlet valve opens, but is more gently in other time; The volume efficiency is influenced by the output pressure slightly, and decreases as the working rotational speed increases; When the inherent frequency of the valves is integer multiple of the working frequency, the volume efficiency of system will decrease evidently. 展开更多
关键词 Check valve Simulation Dynamics model Internal combustion water pump(ICWP)
下载PDF
Studies on aluminum powder combustion in detonation environment 被引量:2
6
作者 Jian-Xin Nie Run-Zhe Kan +3 位作者 Qing-Jie Jiao Qiu-Shi Wang Xue-Yong Guo Shi Yan 《Chinese Physics B》 SCIE EI CAS CSCD 2022年第4期426-435,共10页
The combustion mechanism of aluminum particles in a detonation environment characterized by high temperature(in unit 10^(3)K),high pressure(in unit GPa),and high-speed motion(in units km/s)was studied,and a combustion... The combustion mechanism of aluminum particles in a detonation environment characterized by high temperature(in unit 10^(3)K),high pressure(in unit GPa),and high-speed motion(in units km/s)was studied,and a combustion model of the aluminum particles in detonation environment was established.Based on this model,a combustion control equation for aluminum particles in detonation environment was obtained.It can be seen from the control equation that the burning time of aluminum particle is mainly affected by the particle size,system temperature,and diffusion coefficient.The calculation result shows that a higher system temperature,larger diffusion coefficient,and smaller particle size lead to a faster burn rate and shorter burning time for aluminum particles.After considering the particle size distribution characteristics of aluminum powder,the application of the combustion control equation was extended from single aluminum particles to nonuniform aluminum powder,and the calculated time corresponding to the peak burn rate of aluminum powder was in good agreement with the experimental electrical conductivity results.This equation can quantitatively describe the combustion behavior of aluminum powder in different detonation environments and provides technical means for quantitative calculation of the aluminum powder combustion process in detonation environment. 展开更多
关键词 aluminum particle combustion model aluminum powder burn rate equation burning time
下载PDF
Validation of the RANS-SOM Combustion Model Using Direct Numerical Simulation of Incompressible Turbulent Reacting Flows 被引量:1
7
作者 王方 许春晓 周力行 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2008年第5期679-685,共7页
The second-order moment combustion model, proposed by the authors is validated using the direct numerical simulation (DNS) of incompressible turbulent reacting channel flows. The instantaneous DNS results show the n... The second-order moment combustion model, proposed by the authors is validated using the direct numerical simulation (DNS) of incompressible turbulent reacting channel flows. The instantaneous DNS results show the near-wall strip structures of concentration and temperature fluctuations. The DNS statistical results give the budget of the terms in the correlation equations, showing that the production and dissipation terms are most important. The DNS statistical data are used to validate the closure model in RANS second-order moment (SOM) combustion model. It is found that the simulated diffusion and production terms are in agreement with the DNS data in most flow regions, except in the near-wall region, where the near-wall modification should be made, and the closure model for the dissipation term needs further improvement. The algebraic second-order moment (ASOM) combustion model is well validated by DNS. 展开更多
关键词 second-order moment combustion model direct numerical simulation incompressible reacting flows
下载PDF
THE WEAK DETONATION SOLUTIONS TO THE SIMPLEST COMBUSTION MODEL 被引量:1
8
作者 谭得春 张同 《Acta Mathematica Scientia》 SCIE CSCD 1993年第3期282-292,共11页
In the present paper the authors prove that all the generalised entropy,solutions of the CJ-model, which for the given Riemann initial data are a oneparameter family u(eta) characterised by weak detonation discontinui... In the present paper the authors prove that all the generalised entropy,solutions of the CJ-model, which for the given Riemann initial data are a oneparameter family u(eta) characterised by weak detonation discontinuity point eta, are just the limits of the admissible solutions u(ek) Of the selfsimilar combustion model. In fact, the authors prove that for any possible eta, there exists a constant B>0 s.t. 展开更多
关键词 THE WEAK DETONATION SOLUTIONS TO THE SIMPLEST combustion MODEL
下载PDF
Effect of hydrogen combustion reaction on the dehydrogenation of ethane in a fixed-bed catalytic membrane reactor 被引量:2
9
作者 Masoud Hasany Mohammad Malakootikhah +1 位作者 Vahid Rahmanian Soheila Yaghmaei 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2015年第8期1316-1325,共10页
A two-dimensional non-isothermal mathematical model has been developed for the ethane dehydrogenation reaction in a fixed-bed catalytic membrane reactor. Since ethane dehydrogenation is an equilibrium reaction,removal... A two-dimensional non-isothermal mathematical model has been developed for the ethane dehydrogenation reaction in a fixed-bed catalytic membrane reactor. Since ethane dehydrogenation is an equilibrium reaction,removal of produced hydrogen by the membrane shifts the thermodynamic equilibrium to ethylene production.For further displacement of the dehydrogenation reaction, oxidative dehydrogenation method has been used.Since ethane dehydrogenation is an endothermic reaction, the energy produced by the oxidative dehydrogenation method is consumed by the dehydrogenation reaction. The results show that the oxidative dehydrogenation method generated a substantial improvement in the reactor performance in terms of high conversions and signi ficant energy saving. It was also established that the sweep gas velocity in the shell side of the reactor is one of the most important factors in the effectiveness of the reactor. 展开更多
关键词 Catalytic membrane reactor Mathematical modeling Ethane dehydrogenation Hydrogen combustion
下载PDF
Syngas Fuel Combustion in Re-circulating Vortex Combustor 被引量:2
10
作者 Khaled Zbeeb Chaouki Ghenai 《Journal of Energy and Power Engineering》 2013年第10期1852-1864,共13页
This paper presents results on the combustion of syngas fuel in re-circulating vortex combustor. The combustion stability is achieved through the use of cavities in which recirculation zones of hot products generated ... This paper presents results on the combustion of syngas fuel in re-circulating vortex combustor. The combustion stability is achieved through the use of cavities in which recirculation zones of hot products generated by the direct injection of fuel and air are created and acting as a continuous source of ignition for the incoming main fuel-air stream. CFD (computational fluid dynamics) analysis was performed in this study to test the combustion performance and emissions from the vortex trapped combustor using synthetic gas or syngas fuel produced from the gasification process. The flame temperature, the flow field and species concentrations inside the vortex trapped combustor were obtained. Several syngas fuels with different fuel compositions (H2, CO, CH4, CO2, N2 and H20) and lower heating values were tested in this study. The changes on the flame temperature and species concentrations inside the combustor, the emissions of NOx, CO, CO2 at the exit of the combustor, the combustor efficiency and the total pressure drop for syngas fuels are presented in this paper. The effect of H2/CO ratio and the mass fraction of each constituent of syngas fuels and hydrogen-methane fuel mixtures on the combustion and emissions performances were investigated. 展开更多
关键词 combustion altemative fuels trapped vortex combustor CFD mixture fraction/PDF combustion model.
下载PDF
THE GENERALIZED RIEMANN PROBLEM FOR A SCALAR NONCONVEX COMBUSTION MODEL-THE PERTURBATION ON INITIAL BINDING ENERGY
11
作者 潘丽君 盛万成 《Acta Mathematica Scientia》 SCIE CSCD 2012年第3期1262-1280,共19页
In this article, we study the generalized Riemann problem for a scalar non- convex Chapman-Jouguet combustion model in a neighborhood of the origin (t 〉 0) on the (x, t) plane. We focus our attention to the pertu... In this article, we study the generalized Riemann problem for a scalar non- convex Chapman-Jouguet combustion model in a neighborhood of the origin (t 〉 0) on the (x, t) plane. We focus our attention to the perturbation on initial binding energy. The solutions are obtained constructively under the entropy conditions. It can be found that the solutions are essentially different from the corresponding Riemann solutions for some cases. Especially, two important phenomena are observed: the transition from detonation to deflagration followed by a shock, which appears in the numerical simulations [7, 27]; the transition from deflagration to detonation (DDT), which is one of the core problems in gas dynamic combustion. 展开更多
关键词 Scalar nonconvex Chapman-Jouguet combustion model binding energy PERTURBATION DETONATION DEFLAGRATION
下载PDF
Second-order modeling of non-premixed turbulent methane-air combustion
12
作者 Ali ERSHADI Mehran RAJABI ZARGARABADI 《Journal of Central South University》 SCIE EI CAS CSCD 2021年第11期3545-3555,共11页
The main purpose of this research is the second-order modeling of flow and turbulent heat flux in nonpremixed methane-air combustion.A turbulent stream of non-premixed combustion in a stoichiometric condition,is numer... The main purpose of this research is the second-order modeling of flow and turbulent heat flux in nonpremixed methane-air combustion.A turbulent stream of non-premixed combustion in a stoichiometric condition,is numerically analyzed through the Reynolds averaged Navier-Stokes(RANS) equations.For modeling radiation and combustion,the discrete ordinates(DO) and eddy dissipation concept model have been applied.The Reynolds stress transport model(RSM) also was used for turbulence modeling.For THF in the energy equation,the GGDH model and high order algebraic model of HOGGDH with simple eddy diffusivity model have been applied.Comparing the numerical results of the SED model(with the turbulent Prandtl 0.85) and the second-order heat flux models with available experimental data follows that applying the second-order models significantly led to the modification of predicting temperature distribution and species mass fraction distribution in the combustion chamber.Calculation of turbulent Prandtl number in the combustion chamber shows that the assumption of Pr_(t) of 0.85 is far from reality and Pr_(t) in different areas varies from 0.4 to 1.2. 展开更多
关键词 combustion modeling turbulent Prandtl number second-order models Reynolds stress transport model
下载PDF
Statistical model for combustion of high-metal magnesium-based hydro-reactive fuel
13
作者 胡建新 韩超 +2 位作者 夏智勋 黄利亚 黄序 《Chinese Physics B》 SCIE EI CAS CSCD 2012年第12期290-297,共8页
We investigate experimentally and analytically the combustion behavior of a high-metal magnesium-based hydro- reactive fuel under high temperature gaseous atmosphere. The fuel studied in this paper contains 73% magnes... We investigate experimentally and analytically the combustion behavior of a high-metal magnesium-based hydro- reactive fuel under high temperature gaseous atmosphere. The fuel studied in this paper contains 73% magnesium powders. An experimental system is designed and experiments are carried out in both argon and water vapor atmo- spheres. It is found that the burning surface temperature of the fuel is higher in water vapor than that in argon and both of them are higher than the melting point of magnesium, which indicates the molten state of magnesium particles in the burning surface of the fuel. Based on physical considerations and experimental results, a mathematical one-dimensional model is formulated to describe the combustion behavior of the high-metal magnesium-based hydro-reactive fuel. The model enables the evaluation of the burning surface temperature, the burning rate and the flame standoff distance each as a function of chamber pressure and water vapor concentration. The results predicted by the model show that the burning rate and the surface temperature increase when the chamber pressure and the water vapor concentration increase, which are in agreement with the observed experimental trends. 展开更多
关键词 high-metal magnesium-based hydro-reactive fuel water ramjet engine combustion ex- periment combustion model
下载PDF
Riemann problem for a simplest scalar nonconvex ZND combustion model with viscosity
14
作者 赖耕 盛万成 《Journal of Shanghai University(English Edition)》 CAS 2008年第5期383-387,共5页
In this paper, a simplest scalar nonconvex ZND combustion model with viscosity is considered. The existence of the global solution of the Riemann problem for the combustion model is obtained by using the fixed point t... In this paper, a simplest scalar nonconvex ZND combustion model with viscosity is considered. The existence of the global solution of the Riemann problem for the combustion model is obtained by using the fixed point theorem. 展开更多
关键词 scalar nonconvex ZND combustion model Riemann problem self-similar solution Leray-Schauder fixed point theorem
下载PDF
Knock prediction for dual fuel engines by using a simplified combustion model
15
作者 费少梅 刘震涛 严兆大 《Journal of Zhejiang University Science》 EI CSCD 2003年第5期591-594,共4页
The present work used a methane-air mixture chemical kinetics scheme consisting of 119 elementary reaction steps and 41 chemical species to develop a simplified combustion model for prediction of the knock in dual fue... The present work used a methane-air mixture chemical kinetics scheme consisting of 119 elementary reaction steps and 41 chemical species to develop a simplified combustion model for prediction of the knock in dual fuel engines. Calculated values by the model for natural gas operation showed good agreement with corresponding experimental values over a broad range of operating conditions. 展开更多
关键词 Dual fuel engines combustion model Knock prediction
下载PDF
Blended-fuel based EDC combustion model and its application in heptane-ethanol fire simulation
16
作者 Changjian Wang Jennifer Wen +1 位作者 Yanming Ding Shouxiang Lu 《Theoretical & Applied Mechanics Letters》 CAS 2014年第3期63-66,共4页
The blended-fuel based eddy-dissipation-concept combustion model was newly developed in the FireFOAM framework, and applied to simulate 30 cm×30 cm heptane-ethanol pool fire. Comparison was made of fire height, c... The blended-fuel based eddy-dissipation-concept combustion model was newly developed in the FireFOAM framework, and applied to simulate 30 cm×30 cm heptane-ethanol pool fire. Comparison was made of fire height, centerline temperature against experimental measurements, which shows that they match very well with each other. However, further studies are needed to examine the validation of this model in fire simulations with various scales. 展开更多
关键词 fire safety blended-fuel based EDC combustion model numerical simulation
下载PDF
Combustion crack-network reaction evolution model for highly-confined explosives
17
作者 Zhuo-ping Duan Meng-Jing Bai +2 位作者 Zhi-ling Bai Xin-jie Wang Feng-lei Huang 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2023年第8期54-67,共14页
The evolution behavior of combustion crack reaction of highly confined solid explosives after non-shock ignition is governed by multiple dynamic processes,including intrinsic combustion of explosives,crack propagation... The evolution behavior of combustion crack reaction of highly confined solid explosives after non-shock ignition is governed by multiple dynamic processes,including intrinsic combustion of explosives,crack propagation,and rapid growth of combustion surface area.Here,the pressure increase can accelerate the combustion rate of explosives,and the crack propagation can enlarge the combustion surface area.The coupling between these two effects leads to the self-enhanced combustion of explosive charge system,which is the key mechanism for the reaction development after ignition.In this study,combustion cracknetwork(CCN) model is established to describe the evolution of combustion crack reaction of highly confined solid explosives after non-shock ignition and quantify the reaction violence.The feasibility of the model is verified by comparing the computational and experimental results.The results reveal that an increase in charge structure size causes an increase in the time of crack pressurization and extension of cracks due to the high temperature-generated gas flow and surface combustion during the initial stage of explosive reaction,but when the casing is fractured,the larger the charge structure,the more violent the late reaction and the larger the charge reaction degree.The input pressure has no obvious influence on the final reaction violence.Further,a larger venting hole area leads to better pressure relief effect,which causes slower pressure growth inside casing.Larger reserved ullage volume causes longer lowpressure induction stage,which further restrains the internal pressure growth.Furthermore,the stronger the casing constraint,the more rapid the self-enhanced combustion of the high temperaturegenerated gas,which results in more violent charge reaction and larger charge reaction degree during casing break.Overall,the proposed model can clarify the effects of intrinsic combustion rate of explosives,charge structure size,input pressure,relief area,ullage volume,and constraint strength on the reaction evolution,which can provide theoretical basis for violence evaluation and safety design for ammunition under accident stimulus. 展开更多
关键词 Solid explosives Non-shock ignition Self-enhanced combustion combustion crack-network(CCN)model Relief area Reaction degree
下载PDF
A comprehensive fractal char combustion model
18
作者 Yuting Liu Rong He 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2016年第12期1750-1760,共11页
The char combustion mechanisms were analyzed and a comprehensive fractal char combustion model was developed to give a better understanding and better predictions of the char combustion characteristics. Most of the co... The char combustion mechanisms were analyzed and a comprehensive fractal char combustion model was developed to give a better understanding and better predictions of the char combustion characteristics. Most of the complex factors affecting the char combustion were included, such as the coupling effects between the pore diffusion and the chemical reactions, the evolution of the char pore structures and the variation of the apparent reaction order during combustion, the CO/CO_2 ratio in the combustion products and the correction for oxy-char combustion. Eleven different chars were then combusted in two drop tube furnaces with the conversions of the partly burned char samples measured by thermogravimetric analysis. The combustion processes of these chars were simulated with the predicted char conversions matching very well with the measured data which shows that this char combustion model has good accuracy. The apparent reaction order of the char combustion decreases, stabilizes and then increases during the combustion process. The combustion rates in the oxy-mode are generally slower than in the air-mode and the effect of the char-CO_2 gasification reaction becomes obvious only when the temperature is relatively high and the O_2 concentration is relatively low. 展开更多
关键词 combustion Model Experimental validation Pore Fractals
下载PDF
EXISTENCE OF GENERALIZED SOLUTIONS TO A HYPERBOLIC MODEL OF COMBUSTION
19
作者 陆云光 胡家信 《Acta Mathematica Scientia》 SCIE CSCD 1993年第2期195-201,共7页
In this paper we obtain the existence of the generalized solutions to the Cauchy problem for a model of combustion provided that the function f is of nonconvexity and initial values lie in the bounded, measurable class.
关键词 EXISTENCE OF GENERALIZED SOLUTIONS TO A HYPERBOLIC MODEL OF combustion
下载PDF
Experimental and numerical study on ignition and combustion characteristics of boron-magnesium composite powders 被引量:3
20
作者 Shuyuan Liu Luyang Han +3 位作者 Hongmei Liu Yingkai Song Linlin Liu Songqi Hu 《Particuology》 SCIE EI CAS CSCD 2024年第1期12-29,共18页
A high-pressure laser ignition and combustion system with adjustable oxidizer gas atmosphere is established to investigate the ignition and combustion characteristics of boron-magnesium(BM)com-posite powders.An igniti... A high-pressure laser ignition and combustion system with adjustable oxidizer gas atmosphere is established to investigate the ignition and combustion characteristics of boron-magnesium(BM)com-posite powders.An ignition and combustion model of BM powders is established and validated in the present study.The results show that increasing water content,O_(2) content and Mg content all result in shorter ignition delay time of BM powders,among which the effect of water content is the most obvious.However,ignition delay time increases as pressure increases.The combustion time decreases with increasing Mg content and ambient pressure but increases with water content.With the increase of O_(2) content,combustion time of BM powders first increases and then decreases,which means a critical O_(2) content exists above which combustion time decreases.The results show that there exists a trade-off between ignition and combustion performance of BM composite powders. 展开更多
关键词 Boron magnesium powder Laser ignition Ignition and combustion model Reaction mechanism Numerical model
原文传递
上一页 1 2 3 下一页 到第
使用帮助 返回顶部