Two suites of mafic dykes,T1193-A and T1194-A,outcrop in Gyangze area,southeast Tibet.They are in the area of Comei LIP and have indistinguishable field occurrences with two other dykes in Gyangze,T0902 dyke with 137....Two suites of mafic dykes,T1193-A and T1194-A,outcrop in Gyangze area,southeast Tibet.They are in the area of Comei LIP and have indistinguishable field occurrences with two other dykes in Gyangze,T0902 dyke with 137.7±1.3 Ma zircon age and T0907 dyke with 142±1.4 Ma zircon age reported by Wang YY et al.(2016),indicating coeval formation time.Taking all the four diabase dykes into consideration,two different types,OIB-type and weak enriched-type,can be summarized.The“OIB-type”samples,including T1193-A and T0907 dykes,show OIB-like geochemical features and have initial Sr-Nd isotopic values similar with most mafic products in Comei Large Igneous Provinces(LIP),suggesting that they represent melts directly generated from the Kerguelen mantle plume.The“weak enriched-type”samples,including T1194-A and T0902 dykes,have REEs and trace element patterns showing withinplate affinity but have obvious Nb-Ta-Ti negative anomalies.They show uniform lowerεNd(t)values(−6‒−2)and higher 87Sr/86Sr(t)values(0.706‒0.709)independent of their MgO variation,indicating one enriched mantle source.Considering their closely spatial and temporal relationship with the widespread Comei LIP magmatic products in Tethyan Himalaya,these“weak enriched-type”samples are consistent with mixing of melts from mantle plume and the above ancient Tethyan Himalaya subcontinental lithospheric mantle(SCLM)in different proportions.These weak enriched mafic rocks in Comei LIP form one special rock group and most likely suggest large scale hot mantle plume-continental lithosphere interaction.This process may lead to strong modification of the Tethyan Himalaya lithosphere in the Early Cretaceous.展开更多
A suite of ultramafic and mafic rocks developed in the Chigu Tso area,eastern Tethyan Himalaya.Baddeleyite and zircon U-Pb ages acquired by SIMS and LA-ICP-MS from olivine pyroxenite rocks in the Chigu Tso area are 13...A suite of ultramafic and mafic rocks developed in the Chigu Tso area,eastern Tethyan Himalaya.Baddeleyite and zircon U-Pb ages acquired by SIMS and LA-ICP-MS from olivine pyroxenite rocks in the Chigu Tso area are 138.9±3.0 Ma and 139.0±1.9 Ma,respectively.These two Early Cretaceous ages are similar with the ages of the more abundant mafic rocks in the eastern Tethyan Himalaya,indicating that this suite of ultramafic and mafic rocks in the Chigu Tso area should be included in the outcrop area of the Comei Large Igneous Province(LIP).These ultramafic rocks provide significant evidence that the involvement of mantle plume/hot spot activities in the formation of the Comei LIP.Baddeleyite U-Pb dating by SIMS is one reliable and convenient method to constrain the formation time of ultramafic rocks.The dating results of baddeleyite and zircon from the olivine pyroxenite samples in this paper are consistent with each other within analytical uncertainties,suggesting that baddeleyite and zircon were both formed during the same magmatic process.The consistency of baddeleyite U-Pb ages in the Chigu Tso area with zircon U-Pb ages for a large number of Early Cretaceous mafic rocks in the eastern Tethyan Himalaya further support that zircon grains from such mafic rocks yielding Early Cretaceous ages are also magmatic in origin.展开更多
The Niangzhong diabase dikes,dated at 138.1±0.4 Ma,are located within the outcrop area of the Comei large igneous province(LIP).These diabase samples can be divided into two groups:samples in Group 1 show varying...The Niangzhong diabase dikes,dated at 138.1±0.4 Ma,are located within the outcrop area of the Comei large igneous province(LIP).These diabase samples can be divided into two groups:samples in Group 1 show varying MgO(1.50 wt.%-10.25 wt.%)and TiO_(2)(0.85 wt.%-4.63 wt.%)contents,and enriched initial isotope compositions(^(87)Sr/^(86)Sr(t)=0.7056-0.7112,ε_(Nd)(t)=-0.3-+3.8),with OIB-like REEs and trace elements patterns,resulting from low degree melting of garnet-bearing lherzolite mantle sources;in contrast,samples in Group 2 show limited MgO(4.14 wt.%-7.75 wt.%)and TiO_(2)(0.98 wt.%-1.69 wt.%)contents,and depleted initial isotope compositions(^(87)Sr/^(86)Sr(t)=0.7075-0.7112,ε_(Nd)(t)=+5.5-+6.2),with N-MORB-like REEs and trace elements patterns,resulting from relatively high degree melting of spinel-bearing lherzolite mantle source.Combined with the published representative data about Comei LIP,we summarize that the source components for Comei LIP products include OIB end-member,enriched OIB end-member,and N-MORB end-member,respectively.Melts modeling suggests that magmas in the Comei LIP evolve in a relatively high oxygen fugacity condition,which influenced their fractionation sequences and led to systematic changes of TiO_(2)contents,Ti/Y and Ti/Ti*ratios.From the spatial and temporal distribution of above three end-member samples,deep process of Kerguelen plume during the Comei LIP formation can be interpreted as the interaction among the Kerguelen plume,the overlying lithospheric mantle,and the upwelling asthenosphere.The magmatism of Comei LIP began at~140 Ma and then lasted and peaked at~132 Ma with the progressively lithospheric thinning of eastern Gondwana upon the impact of Kerguelen plume.展开更多
基金supported by National Science Foundation of China(42102059 and 92055202)the China Geological Survey(DD20221817 and DD20190057)+1 种基金the basic scientific research funding in CAGS(J2204)the Second Tibetan Plateau Scientific Expedition and Research(2019QZKK0702).
文摘Two suites of mafic dykes,T1193-A and T1194-A,outcrop in Gyangze area,southeast Tibet.They are in the area of Comei LIP and have indistinguishable field occurrences with two other dykes in Gyangze,T0902 dyke with 137.7±1.3 Ma zircon age and T0907 dyke with 142±1.4 Ma zircon age reported by Wang YY et al.(2016),indicating coeval formation time.Taking all the four diabase dykes into consideration,two different types,OIB-type and weak enriched-type,can be summarized.The“OIB-type”samples,including T1193-A and T0907 dykes,show OIB-like geochemical features and have initial Sr-Nd isotopic values similar with most mafic products in Comei Large Igneous Provinces(LIP),suggesting that they represent melts directly generated from the Kerguelen mantle plume.The“weak enriched-type”samples,including T1194-A and T0902 dykes,have REEs and trace element patterns showing withinplate affinity but have obvious Nb-Ta-Ti negative anomalies.They show uniform lowerεNd(t)values(−6‒−2)and higher 87Sr/86Sr(t)values(0.706‒0.709)independent of their MgO variation,indicating one enriched mantle source.Considering their closely spatial and temporal relationship with the widespread Comei LIP magmatic products in Tethyan Himalaya,these“weak enriched-type”samples are consistent with mixing of melts from mantle plume and the above ancient Tethyan Himalaya subcontinental lithospheric mantle(SCLM)in different proportions.These weak enriched mafic rocks in Comei LIP form one special rock group and most likely suggest large scale hot mantle plume-continental lithosphere interaction.This process may lead to strong modification of the Tethyan Himalaya lithosphere in the Early Cretaceous.
基金The authors thank and appreciate Qiu-li Li and Ke-jun Hou for their help in guiding the dating work.This study was supported by National Science Foundation of China(41425010,41430212)China Geological Survey Project(DD20190057)+1 种基金National Key Research and Development Project of China(2016YFC0600304)Basic scientific research fund in Institute of Geology,CAGS(J1901-1,J1901-10).
文摘A suite of ultramafic and mafic rocks developed in the Chigu Tso area,eastern Tethyan Himalaya.Baddeleyite and zircon U-Pb ages acquired by SIMS and LA-ICP-MS from olivine pyroxenite rocks in the Chigu Tso area are 138.9±3.0 Ma and 139.0±1.9 Ma,respectively.These two Early Cretaceous ages are similar with the ages of the more abundant mafic rocks in the eastern Tethyan Himalaya,indicating that this suite of ultramafic and mafic rocks in the Chigu Tso area should be included in the outcrop area of the Comei Large Igneous Province(LIP).These ultramafic rocks provide significant evidence that the involvement of mantle plume/hot spot activities in the formation of the Comei LIP.Baddeleyite U-Pb dating by SIMS is one reliable and convenient method to constrain the formation time of ultramafic rocks.The dating results of baddeleyite and zircon from the olivine pyroxenite samples in this paper are consistent with each other within analytical uncertainties,suggesting that baddeleyite and zircon were both formed during the same magmatic process.The consistency of baddeleyite U-Pb ages in the Chigu Tso area with zircon U-Pb ages for a large number of Early Cretaceous mafic rocks in the eastern Tethyan Himalaya further support that zircon grains from such mafic rocks yielding Early Cretaceous ages are also magmatic in origin.
基金supported by the Second Tibetan Plateau Scientific Expedition and Research(No.2019QZKK0702)the National Natural Science Foundation of China(Nos.92055202,41873023,42102059)+3 种基金the China Geological Survey(No.DD20190057)the National Key Research and Development Project of China(No.2016YFC0600304)the Basic Scientific Research Fund of Key Laboratory of Deep-Earth Dynamics of Ministry of Natural Resources(Nos.J1901-1,J190110)the National Foundation from China Scholarship Council。
文摘The Niangzhong diabase dikes,dated at 138.1±0.4 Ma,are located within the outcrop area of the Comei large igneous province(LIP).These diabase samples can be divided into two groups:samples in Group 1 show varying MgO(1.50 wt.%-10.25 wt.%)and TiO_(2)(0.85 wt.%-4.63 wt.%)contents,and enriched initial isotope compositions(^(87)Sr/^(86)Sr(t)=0.7056-0.7112,ε_(Nd)(t)=-0.3-+3.8),with OIB-like REEs and trace elements patterns,resulting from low degree melting of garnet-bearing lherzolite mantle sources;in contrast,samples in Group 2 show limited MgO(4.14 wt.%-7.75 wt.%)and TiO_(2)(0.98 wt.%-1.69 wt.%)contents,and depleted initial isotope compositions(^(87)Sr/^(86)Sr(t)=0.7075-0.7112,ε_(Nd)(t)=+5.5-+6.2),with N-MORB-like REEs and trace elements patterns,resulting from relatively high degree melting of spinel-bearing lherzolite mantle source.Combined with the published representative data about Comei LIP,we summarize that the source components for Comei LIP products include OIB end-member,enriched OIB end-member,and N-MORB end-member,respectively.Melts modeling suggests that magmas in the Comei LIP evolve in a relatively high oxygen fugacity condition,which influenced their fractionation sequences and led to systematic changes of TiO_(2)contents,Ti/Y and Ti/Ti*ratios.From the spatial and temporal distribution of above three end-member samples,deep process of Kerguelen plume during the Comei LIP formation can be interpreted as the interaction among the Kerguelen plume,the overlying lithospheric mantle,and the upwelling asthenosphere.The magmatism of Comei LIP began at~140 Ma and then lasted and peaked at~132 Ma with the progressively lithospheric thinning of eastern Gondwana upon the impact of Kerguelen plume.