为解决运动想象脑电(electroencephalogram, EEG)信号多分类传输速率慢、准确率低的问题,本研究利用“一对多”滤波组共空间模式(one vs rest filter bank common spatial pattern, OVR-FBCSP)和稀疏嵌入(sparse embeddings, SE)提出了...为解决运动想象脑电(electroencephalogram, EEG)信号多分类传输速率慢、准确率低的问题,本研究利用“一对多”滤波组共空间模式(one vs rest filter bank common spatial pattern, OVR-FBCSP)和稀疏嵌入(sparse embeddings, SE)提出了一种基于SE的多分类EEG信号分类方法。为降低多类任务特征提取的复杂度,提高分类效率,本方法首先采用OVR-FBCSP进行EEG信号特征提取;然后对其相应的标签矩阵进行低维嵌入,构建稀疏嵌入模型,分别计算训练和测试数据的嵌入矩阵;最后在嵌入空间中对训练和测试数据执行k最近邻(k-nearest neighbor, kNN)分类。本研究在BCI Competition IV-2a公开数据集进行了实验测试,并与其他分类方法进行了对比。实验结果表明,本研究方法拥有较高的分类准确率和较短的分析时间。展开更多