期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Properties and interfacial microstructure of cement-based materials with composite micro-grains
1
作者 冯奇 巴恒静 柳俊哲 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2005年第5期499-503,共5页
Silica fume, fly ash and nano-fiber mineral materials (NR powder) are employed to incorporate into cement-based materials. According to the grain grading mathematical model of cement-based materials, two packing syste... Silica fume, fly ash and nano-fiber mineral materials (NR powder) are employed to incorporate into cement-based materials. According to the grain grading mathematical model of cement-based materials, two packing systems, namely, spherical grading system and nano-fiber reinforced system were designed. Properties and interfacial microstructure of the two systems were studied according to secondary interface theory. It was shown that nano-fiber mineral materials can improve the grain grading of the admixture, increase the density of the system, improve the microstructure of the interface and the hardened paste, and enhance the uniformity of cement-based materials mixed with composite micro-grains and greatly increase their wearable rigidity and flexure strength. In this paper, two kinds of interface models, including spherical grain model and nano-fiber reinforced interface model of the cement-based materials mixed with composite micro-grains, were brought forward. 展开更多
关键词 cement-based materials mixed with composite micro-grains compact packing system interface structure ideal model
下载PDF
Integrated modeling of fracturing-flowback-production dynamics and calibration on field data:Optimum well startup scenarios 被引量:1
2
作者 S.A.Boronin K.I.Tolmacheva +7 位作者 I.A.Garagash I.R.Abdrakhmanov G.Yu Fisher A.L.Vainshtein P.K.Kabanova E.V.Shel G.V.Paderin A.A.Osiptsov 《Petroleum Science》 SCIE EI CAS CSCD 2023年第4期2202-2231,共30页
We aim at the development of a general modelling workflow for design and optimization of the well flowback and startup operation on hydraulically fractured wells.Fracture flowback model developed earlier by the author... We aim at the development of a general modelling workflow for design and optimization of the well flowback and startup operation on hydraulically fractured wells.Fracture flowback model developed earlier by the authors is extended to take into account several new fluid mechanics factors accompanying flowback,namely,viscoplastic rheology of unbroken cross-linked gel and coupled“fracture-reservoir”numerical submodel for influx from rock formation.We also developed models and implemented new geomechanical factors,namely,(i)fracture closure in gaps between proppant pillars and in proppant-free cavity in the vicinity of the well taking into account formation creep;(ii)propagation of plastic deformations due to tensile rock failure from the fracture face into the fluid-saturated reservoir.We carried out parametric calculations to study the dynamics of fracture conductivity during flowback and its effect on well production for the set of parameters typical of oil wells in Achimov formation of Western Siberia,Russia.The first set of calculations is carried out using the flowback model in the reservoir linear flow regime.It is obtained that the typical length of hydraulic fracture zone,in which tensile rock failure at the fracture walls occurs,is insignificant.In the range of rock permeability in between 0.01 mD and 1 D,we studied the effect of non-dimensional governing parameters as well as bottomhole pressure drop dynamics on oil production.We obtained a map of pressure drop regimes(fast,moderate or slow)leading to maximum cumulative oil production.The second set of parametric calculations is carried out using integrated well production modelling workflow,in which the flowback model acts as a missing link in between hydraulic fracturing and reservoir commercial simulators.We evaluated quantitatively effects of initial fracture aperture,proppant diameter,yield stress of fracturing fluid,pressure drop rate and proppant material type(ceramic and sand)on long-term well production beyond formation linear regime.The third set of parametric calculations is carried out using the flowback model history-matched to field data related to production of four multistage hydraulically fractured oil wells in Achimov formation of Western Siberia,Russia.On the basis of the matched model we evaluated geomechanics effects on fracture conductivity degradation.We also performed sensitivity analysis in the framework of the history-matched model to study the impact of geomechanics and fluid rheology parameters on flowback efficiency. 展开更多
关键词 Fracture cleanup FLOWBACK Tensile rock failure Fracture closure Proppant embedment Proppant pack compaction
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部