This study introduces an innovative“Big Model”strategy to enhance Bridge Structural Health Monitoring(SHM)using a Convolutional Neural Network(CNN),time-frequency analysis,and fine element analysis.Leveraging ensemb...This study introduces an innovative“Big Model”strategy to enhance Bridge Structural Health Monitoring(SHM)using a Convolutional Neural Network(CNN),time-frequency analysis,and fine element analysis.Leveraging ensemble methods,collaborative learning,and distributed computing,the approach effectively manages the complexity and scale of large-scale bridge data.The CNN employs transfer learning,fine-tuning,and continuous monitoring to optimize models for adaptive and accurate structural health assessments,focusing on extracting meaningful features through time-frequency analysis.By integrating Finite Element Analysis,time-frequency analysis,and CNNs,the strategy provides a comprehensive understanding of bridge health.Utilizing diverse sensor data,sophisticated feature extraction,and advanced CNN architecture,the model is optimized through rigorous preprocessing and hyperparameter tuning.This approach significantly enhances the ability to make accurate predictions,monitor structural health,and support proactive maintenance practices,thereby ensuring the safety and longevity of critical infrastructure.展开更多
Geomechanical assessment using coupled reservoir-geomechanical simulation is becoming increasingly important for analyzing the potential geomechanical risks in subsurface geological developments.However,a robust and e...Geomechanical assessment using coupled reservoir-geomechanical simulation is becoming increasingly important for analyzing the potential geomechanical risks in subsurface geological developments.However,a robust and efficient geomechanical upscaling technique for heterogeneous geological reservoirs is lacking to advance the applications of three-dimensional(3D)reservoir-scale geomechanical simulation considering detailed geological heterogeneities.Here,we develop convolutional neural network(CNN)proxies that reproduce the anisotropic nonlinear geomechanical response caused by lithological heterogeneity,and compute upscaled geomechanical properties from CNN proxies.The CNN proxies are trained using a large dataset of randomly generated spatially correlated sand-shale realizations as inputs and simulation results of their macroscopic geomechanical response as outputs.The trained CNN models can provide the upscaled shear strength(R^(2)>0.949),stress-strain behavior(R^(2)>0.925),and volumetric strain changes(R^(2)>0.958)that highly agree with the numerical simulation results while saving over two orders of magnitude of computational time.This is a major advantage in computing the upscaled geomechanical properties directly from geological realizations without the need to perform local numerical simulations to obtain the geomechanical response.The proposed CNN proxybased upscaling technique has the ability to(1)bridge the gap between the fine-scale geocellular models considering geological uncertainties and computationally efficient geomechanical models used to assess the geomechanical risks of large-scale subsurface development,and(2)improve the efficiency of numerical upscaling techniques that rely on local numerical simulations,leading to significantly increased computational time for uncertainty quantification using numerous geological realizations.展开更多
In the coal mining industry,the gangue separation phase imposes a key challenge due to the high visual similaritybetween coal and gangue.Recently,separation methods have become more intelligent and efficient,using new...In the coal mining industry,the gangue separation phase imposes a key challenge due to the high visual similaritybetween coal and gangue.Recently,separation methods have become more intelligent and efficient,using newtechnologies and applying different features for recognition.One such method exploits the difference in substancedensity,leading to excellent coal/gangue recognition.Therefore,this study uses density differences to distinguishcoal from gangue by performing volume prediction on the samples.Our training samples maintain a record of3-side images as input,volume,and weight as the ground truth for the classification.The prediction process relieson a Convolutional neural network(CGVP-CNN)model that receives an input of a 3-side image and then extractsthe needed features to estimate an approximation for the volume.The classification was comparatively performedvia ten different classifiers,namely,K-Nearest Neighbors(KNN),Linear Support Vector Machines(Linear SVM),Radial Basis Function(RBF)SVM,Gaussian Process,Decision Tree,Random Forest,Multi-Layer Perceptron(MLP),Adaptive Boosting(AdaBosst),Naive Bayes,and Quadratic Discriminant Analysis(QDA).After severalexperiments on testing and training data,results yield a classification accuracy of 100%,92%,95%,96%,100%,100%,100%,96%,81%,and 92%,respectively.The test reveals the best timing with KNN,which maintained anaccuracy level of 100%.Assessing themodel generalization capability to newdata is essential to ensure the efficiencyof the model,so by applying a cross-validation experiment,the model generalization was measured.The useddataset was isolated based on the volume values to ensure the model generalization not only on new images of thesame volume but with a volume outside the trained range.Then,the predicted volume values were passed to theclassifiers group,where classification reported accuracy was found to be(100%,100%,100%,98%,88%,87%,100%,87%,97%,100%),respectively.Although obtaining a classification with high accuracy is the main motive,this workhas a remarkable reduction in the data preprocessing time compared to related works.The CGVP-CNN modelmanaged to reduce the data preprocessing time of previous works to 0.017 s while maintaining high classificationaccuracy using the estimated volume value.展开更多
This study assesses the suitability of convolutional neural networks(CNNs) for downscaling precipitation over East Africa in the context of seasonal forecasting. To achieve this, we design a set of experiments that co...This study assesses the suitability of convolutional neural networks(CNNs) for downscaling precipitation over East Africa in the context of seasonal forecasting. To achieve this, we design a set of experiments that compare different CNN configurations and deployed the best-performing architecture to downscale one-month lead seasonal forecasts of June–July–August–September(JJAS) precipitation from the Nanjing University of Information Science and Technology Climate Forecast System version 1.0(NUIST-CFS1.0) for 1982–2020. We also perform hyper-parameter optimization and introduce predictors over a larger area to include information about the main large-scale circulations that drive precipitation over the East Africa region, which improves the downscaling results. Finally, we validate the raw model and downscaled forecasts in terms of both deterministic and probabilistic verification metrics, as well as their ability to reproduce the observed precipitation extreme and spell indicator indices. The results show that the CNN-based downscaling consistently improves the raw model forecasts, with lower bias and more accurate representations of the observed mean and extreme precipitation spatial patterns. Besides, CNN-based downscaling yields a much more accurate forecast of extreme and spell indicators and reduces the significant relative biases exhibited by the raw model predictions. Moreover, our results show that CNN-based downscaling yields better skill scores than the raw model forecasts over most portions of East Africa. The results demonstrate the potential usefulness of CNN in downscaling seasonal precipitation predictions over East Africa,particularly in providing improved forecast products which are essential for end users.展开更多
Deep learning, especially through convolutional neural networks (CNN) such as the U-Net 3D model, has revolutionized fault identification from seismic data, representing a significant leap over traditional methods. Ou...Deep learning, especially through convolutional neural networks (CNN) such as the U-Net 3D model, has revolutionized fault identification from seismic data, representing a significant leap over traditional methods. Our review traces the evolution of CNN, emphasizing the adaptation and capabilities of the U-Net 3D model in automating seismic fault delineation with unprecedented accuracy. We find: 1) The transition from basic neural networks to sophisticated CNN has enabled remarkable advancements in image recognition, which are directly applicable to analyzing seismic data. The U-Net 3D model, with its innovative architecture, exemplifies this progress by providing a method for detailed and accurate fault detection with reduced manual interpretation bias. 2) The U-Net 3D model has demonstrated its superiority over traditional fault identification methods in several key areas: it has enhanced interpretation accuracy, increased operational efficiency, and reduced the subjectivity of manual methods. 3) Despite these achievements, challenges such as the need for effective data preprocessing, acquisition of high-quality annotated datasets, and achieving model generalization across different geological conditions remain. Future research should therefore focus on developing more complex network architectures and innovative training strategies to refine fault identification performance further. Our findings confirm the transformative potential of deep learning, particularly CNN like the U-Net 3D model, in geosciences, advocating for its broader integration to revolutionize geological exploration and seismic analysis.展开更多
COVID-19 disease caused by the SARS-CoV-2 virus has created social and economic disruption across theworld.The ability of the COVID-19 virus to quickly mutate and transfer has created serious concerns across the world...COVID-19 disease caused by the SARS-CoV-2 virus has created social and economic disruption across theworld.The ability of the COVID-19 virus to quickly mutate and transfer has created serious concerns across the world.It is essential to detectCOVID-19 infection caused by different variants to take preventive measures accordingly.The existing method of detection of infections caused by COVID-19 and its variants is costly and time-consuming.The impacts of theCOVID-19 pandemic in developing countries are very drastic due to the unavailability of medical facilities and infrastructure to handle the pandemic.Pneumonia is the major symptom of COVID-19 infection.The radiology of the lungs in varies in the case of bacterial pneumonia as compared to COVID-19-caused pneumonia.The pattern of pneumonia in lungs in radiology images can also be used to identify the cause associated with pneumonia.In this paper,we propose the methodology of identifying the cause(either due to COVID-19 or other types of infections)of pneumonia from radiology images.Furthermore,because different variants of COVID-19 lead to different patterns of pneumonia,the proposed methodology identifies pneumonia,the COVID-19 caused pneumonia,and Omicron caused pneumonia from the radiology images.To fulfill the above-mentioned tasks,we have used three Convolution Neural Networks(CNNs)at each stage of the proposed methodology.The results unveil that the proposed step-by-step solution enhances the accuracy of pneumonia detection along with finding its cause,despite having a limited dataset.展开更多
Fiber reinforced polymers (FRPs), unlike steel, are corrosion-resistant and therefore are of interest;however, their use is hindered because their brittle shear is formulated in most specifications using limited data ...Fiber reinforced polymers (FRPs), unlike steel, are corrosion-resistant and therefore are of interest;however, their use is hindered because their brittle shear is formulated in most specifications using limited data available at the time. We aimed to predict the shear strength of concrete beams reinforced with FRP bars and without stirrups by compiling a relatively large database of 198 previously published test results (available in appendix). To model shear strength, an artificial neural network was trained by an ensemble of Levenberg-Marquardt and imperialist competitive algorithms. The results suggested superior accuracy of model compared to equations available in specifications and literature.展开更多
This paper studies the global exponential stability of competitive neural networks with different time scales and time-varying delays. By using the method of the proper Lyapunov functions and inequality technique, som...This paper studies the global exponential stability of competitive neural networks with different time scales and time-varying delays. By using the method of the proper Lyapunov functions and inequality technique, some sufficient conditions are presented for global exponential stability of delay competitive neural networks with different time scales. These conditions obtained have important leading significance in the designs and applications of global exponential stability for competitive neural networks. Finally, an example with its simulation is provided to demonstrate the usefulness of the proposed criteria.展开更多
On the basis of asymptotic theory of Gersho, the isodistortion principle of vector clustering was discussed and a kind of competitive and selective learning method (CSL) which may avoid local optimization and have exc...On the basis of asymptotic theory of Gersho, the isodistortion principle of vector clustering was discussed and a kind of competitive and selective learning method (CSL) which may avoid local optimization and have excellent result in application to clusters of HMM model was also proposed. In combining the parallel, self organizational hierarchical neural networks (PSHNN) to reclassify the scores of every form output by HMM, the CSL speech recognition rate is obviously elevated.展开更多
Introduce a method of generation of new units within a cluster and aalgorithm of generating new clusters. The model automatically builds up its dynamically growinginternal representation structure during the learning ...Introduce a method of generation of new units within a cluster and aalgorithm of generating new clusters. The model automatically builds up its dynamically growinginternal representation structure during the learning process. Comparing model with other typicalclassification algorithm such as the Kohonen's self-organizing map, the model realizes a multilevelclassification of the input pattern with an optional accuracy and gives a strong support possibilityfor the parallel computational main processor. The idea is suitable for the high-level storage ofcomplex datas structures for object recognition.展开更多
Because interval value is quite natural in clustering, an interval-valued fuzzy competitive neural network is proposed. Firstly, this paper proposes several definitions of distance relating to interval number. And the...Because interval value is quite natural in clustering, an interval-valued fuzzy competitive neural network is proposed. Firstly, this paper proposes several definitions of distance relating to interval number. And then, it indicates the method of preprocessing input data, the structure of the network and the learning algorithm of the interval-valued fuzzy competitive neural network. This paper also analyses the principle of the learning algorithm. At last, an experiment is used to test the validity of the network.展开更多
文摘This study introduces an innovative“Big Model”strategy to enhance Bridge Structural Health Monitoring(SHM)using a Convolutional Neural Network(CNN),time-frequency analysis,and fine element analysis.Leveraging ensemble methods,collaborative learning,and distributed computing,the approach effectively manages the complexity and scale of large-scale bridge data.The CNN employs transfer learning,fine-tuning,and continuous monitoring to optimize models for adaptive and accurate structural health assessments,focusing on extracting meaningful features through time-frequency analysis.By integrating Finite Element Analysis,time-frequency analysis,and CNNs,the strategy provides a comprehensive understanding of bridge health.Utilizing diverse sensor data,sophisticated feature extraction,and advanced CNN architecture,the model is optimized through rigorous preprocessing and hyperparameter tuning.This approach significantly enhances the ability to make accurate predictions,monitor structural health,and support proactive maintenance practices,thereby ensuring the safety and longevity of critical infrastructure.
基金financial support provided by the Future Energy System at University of Alberta and NSERC Discovery Grant RGPIN-2023-04084。
文摘Geomechanical assessment using coupled reservoir-geomechanical simulation is becoming increasingly important for analyzing the potential geomechanical risks in subsurface geological developments.However,a robust and efficient geomechanical upscaling technique for heterogeneous geological reservoirs is lacking to advance the applications of three-dimensional(3D)reservoir-scale geomechanical simulation considering detailed geological heterogeneities.Here,we develop convolutional neural network(CNN)proxies that reproduce the anisotropic nonlinear geomechanical response caused by lithological heterogeneity,and compute upscaled geomechanical properties from CNN proxies.The CNN proxies are trained using a large dataset of randomly generated spatially correlated sand-shale realizations as inputs and simulation results of their macroscopic geomechanical response as outputs.The trained CNN models can provide the upscaled shear strength(R^(2)>0.949),stress-strain behavior(R^(2)>0.925),and volumetric strain changes(R^(2)>0.958)that highly agree with the numerical simulation results while saving over two orders of magnitude of computational time.This is a major advantage in computing the upscaled geomechanical properties directly from geological realizations without the need to perform local numerical simulations to obtain the geomechanical response.The proposed CNN proxybased upscaling technique has the ability to(1)bridge the gap between the fine-scale geocellular models considering geological uncertainties and computationally efficient geomechanical models used to assess the geomechanical risks of large-scale subsurface development,and(2)improve the efficiency of numerical upscaling techniques that rely on local numerical simulations,leading to significantly increased computational time for uncertainty quantification using numerous geological realizations.
基金the National Natural Science Foundation of China under Grant No.52274159 received by E.Hu,https://www.nsfc.gov.cn/Grant No.52374165 received by E.Hu,https://www.nsfc.gov.cn/the China National Coal Group Key Technology Project Grant No.(20221CY001)received by Z.Guan,and E.Hu,https://www.chinacoal.com/.
文摘In the coal mining industry,the gangue separation phase imposes a key challenge due to the high visual similaritybetween coal and gangue.Recently,separation methods have become more intelligent and efficient,using newtechnologies and applying different features for recognition.One such method exploits the difference in substancedensity,leading to excellent coal/gangue recognition.Therefore,this study uses density differences to distinguishcoal from gangue by performing volume prediction on the samples.Our training samples maintain a record of3-side images as input,volume,and weight as the ground truth for the classification.The prediction process relieson a Convolutional neural network(CGVP-CNN)model that receives an input of a 3-side image and then extractsthe needed features to estimate an approximation for the volume.The classification was comparatively performedvia ten different classifiers,namely,K-Nearest Neighbors(KNN),Linear Support Vector Machines(Linear SVM),Radial Basis Function(RBF)SVM,Gaussian Process,Decision Tree,Random Forest,Multi-Layer Perceptron(MLP),Adaptive Boosting(AdaBosst),Naive Bayes,and Quadratic Discriminant Analysis(QDA).After severalexperiments on testing and training data,results yield a classification accuracy of 100%,92%,95%,96%,100%,100%,100%,96%,81%,and 92%,respectively.The test reveals the best timing with KNN,which maintained anaccuracy level of 100%.Assessing themodel generalization capability to newdata is essential to ensure the efficiencyof the model,so by applying a cross-validation experiment,the model generalization was measured.The useddataset was isolated based on the volume values to ensure the model generalization not only on new images of thesame volume but with a volume outside the trained range.Then,the predicted volume values were passed to theclassifiers group,where classification reported accuracy was found to be(100%,100%,100%,98%,88%,87%,100%,87%,97%,100%),respectively.Although obtaining a classification with high accuracy is the main motive,this workhas a remarkable reduction in the data preprocessing time compared to related works.The CGVP-CNN modelmanaged to reduce the data preprocessing time of previous works to 0.017 s while maintaining high classificationaccuracy using the estimated volume value.
基金supported by the National Key Research and Development Program of China (Grant No.2020YFA0608000)the National Natural Science Foundation of China (Grant No. 42030605)the High-Performance Computing of Nanjing University of Information Science&Technology for their support of this work。
文摘This study assesses the suitability of convolutional neural networks(CNNs) for downscaling precipitation over East Africa in the context of seasonal forecasting. To achieve this, we design a set of experiments that compare different CNN configurations and deployed the best-performing architecture to downscale one-month lead seasonal forecasts of June–July–August–September(JJAS) precipitation from the Nanjing University of Information Science and Technology Climate Forecast System version 1.0(NUIST-CFS1.0) for 1982–2020. We also perform hyper-parameter optimization and introduce predictors over a larger area to include information about the main large-scale circulations that drive precipitation over the East Africa region, which improves the downscaling results. Finally, we validate the raw model and downscaled forecasts in terms of both deterministic and probabilistic verification metrics, as well as their ability to reproduce the observed precipitation extreme and spell indicator indices. The results show that the CNN-based downscaling consistently improves the raw model forecasts, with lower bias and more accurate representations of the observed mean and extreme precipitation spatial patterns. Besides, CNN-based downscaling yields a much more accurate forecast of extreme and spell indicators and reduces the significant relative biases exhibited by the raw model predictions. Moreover, our results show that CNN-based downscaling yields better skill scores than the raw model forecasts over most portions of East Africa. The results demonstrate the potential usefulness of CNN in downscaling seasonal precipitation predictions over East Africa,particularly in providing improved forecast products which are essential for end users.
文摘Deep learning, especially through convolutional neural networks (CNN) such as the U-Net 3D model, has revolutionized fault identification from seismic data, representing a significant leap over traditional methods. Our review traces the evolution of CNN, emphasizing the adaptation and capabilities of the U-Net 3D model in automating seismic fault delineation with unprecedented accuracy. We find: 1) The transition from basic neural networks to sophisticated CNN has enabled remarkable advancements in image recognition, which are directly applicable to analyzing seismic data. The U-Net 3D model, with its innovative architecture, exemplifies this progress by providing a method for detailed and accurate fault detection with reduced manual interpretation bias. 2) The U-Net 3D model has demonstrated its superiority over traditional fault identification methods in several key areas: it has enhanced interpretation accuracy, increased operational efficiency, and reduced the subjectivity of manual methods. 3) Despite these achievements, challenges such as the need for effective data preprocessing, acquisition of high-quality annotated datasets, and achieving model generalization across different geological conditions remain. Future research should therefore focus on developing more complex network architectures and innovative training strategies to refine fault identification performance further. Our findings confirm the transformative potential of deep learning, particularly CNN like the U-Net 3D model, in geosciences, advocating for its broader integration to revolutionize geological exploration and seismic analysis.
文摘COVID-19 disease caused by the SARS-CoV-2 virus has created social and economic disruption across theworld.The ability of the COVID-19 virus to quickly mutate and transfer has created serious concerns across the world.It is essential to detectCOVID-19 infection caused by different variants to take preventive measures accordingly.The existing method of detection of infections caused by COVID-19 and its variants is costly and time-consuming.The impacts of theCOVID-19 pandemic in developing countries are very drastic due to the unavailability of medical facilities and infrastructure to handle the pandemic.Pneumonia is the major symptom of COVID-19 infection.The radiology of the lungs in varies in the case of bacterial pneumonia as compared to COVID-19-caused pneumonia.The pattern of pneumonia in lungs in radiology images can also be used to identify the cause associated with pneumonia.In this paper,we propose the methodology of identifying the cause(either due to COVID-19 or other types of infections)of pneumonia from radiology images.Furthermore,because different variants of COVID-19 lead to different patterns of pneumonia,the proposed methodology identifies pneumonia,the COVID-19 caused pneumonia,and Omicron caused pneumonia from the radiology images.To fulfill the above-mentioned tasks,we have used three Convolution Neural Networks(CNNs)at each stage of the proposed methodology.The results unveil that the proposed step-by-step solution enhances the accuracy of pneumonia detection along with finding its cause,despite having a limited dataset.
文摘Fiber reinforced polymers (FRPs), unlike steel, are corrosion-resistant and therefore are of interest;however, their use is hindered because their brittle shear is formulated in most specifications using limited data available at the time. We aimed to predict the shear strength of concrete beams reinforced with FRP bars and without stirrups by compiling a relatively large database of 198 previously published test results (available in appendix). To model shear strength, an artificial neural network was trained by an ensemble of Levenberg-Marquardt and imperialist competitive algorithms. The results suggested superior accuracy of model compared to equations available in specifications and literature.
基金supported by National Natural Science Foundation of China (Grant No 60674026)the Jiangsu Provincial Natural Science Foundation of China (Grant No BK2007016)Program for Innovative Research Team of Jiangnan University of China
文摘This paper studies the global exponential stability of competitive neural networks with different time scales and time-varying delays. By using the method of the proper Lyapunov functions and inequality technique, some sufficient conditions are presented for global exponential stability of delay competitive neural networks with different time scales. These conditions obtained have important leading significance in the designs and applications of global exponential stability for competitive neural networks. Finally, an example with its simulation is provided to demonstrate the usefulness of the proposed criteria.
基金National Natural Science Foundation ofChina!( No.69672 0 0 7)
文摘On the basis of asymptotic theory of Gersho, the isodistortion principle of vector clustering was discussed and a kind of competitive and selective learning method (CSL) which may avoid local optimization and have excellent result in application to clusters of HMM model was also proposed. In combining the parallel, self organizational hierarchical neural networks (PSHNN) to reclassify the scores of every form output by HMM, the CSL speech recognition rate is obviously elevated.
基金Supported by the National"Fifteenth Year Plan"Key Project(2001BA307B01 02 01)
文摘Introduce a method of generation of new units within a cluster and aalgorithm of generating new clusters. The model automatically builds up its dynamically growinginternal representation structure during the learning process. Comparing model with other typicalclassification algorithm such as the Kohonen's self-organizing map, the model realizes a multilevelclassification of the input pattern with an optional accuracy and gives a strong support possibilityfor the parallel computational main processor. The idea is suitable for the high-level storage ofcomplex datas structures for object recognition.
基金Supported by National Nature Science Foundation of China (No.60573072)
文摘Because interval value is quite natural in clustering, an interval-valued fuzzy competitive neural network is proposed. Firstly, this paper proposes several definitions of distance relating to interval number. And then, it indicates the method of preprocessing input data, the structure of the network and the learning algorithm of the interval-valued fuzzy competitive neural network. This paper also analyses the principle of the learning algorithm. At last, an experiment is used to test the validity of the network.