期刊文献+
共找到3,775篇文章
< 1 2 189 >
每页显示 20 50 100
Big Model Strategy for Bridge Structural Health Monitoring Based on Data-Driven, Adaptive Method and Convolutional Neural Network (CNN) Group
1
作者 Yadong Xu Weixing Hong +3 位作者 Mohammad Noori Wael A.Altabey Ahmed Silik Nabeel S.D.Farhan 《Structural Durability & Health Monitoring》 EI 2024年第6期763-783,共21页
This study introduces an innovative“Big Model”strategy to enhance Bridge Structural Health Monitoring(SHM)using a Convolutional Neural Network(CNN),time-frequency analysis,and fine element analysis.Leveraging ensemb... This study introduces an innovative“Big Model”strategy to enhance Bridge Structural Health Monitoring(SHM)using a Convolutional Neural Network(CNN),time-frequency analysis,and fine element analysis.Leveraging ensemble methods,collaborative learning,and distributed computing,the approach effectively manages the complexity and scale of large-scale bridge data.The CNN employs transfer learning,fine-tuning,and continuous monitoring to optimize models for adaptive and accurate structural health assessments,focusing on extracting meaningful features through time-frequency analysis.By integrating Finite Element Analysis,time-frequency analysis,and CNNs,the strategy provides a comprehensive understanding of bridge health.Utilizing diverse sensor data,sophisticated feature extraction,and advanced CNN architecture,the model is optimized through rigorous preprocessing and hyperparameter tuning.This approach significantly enhances the ability to make accurate predictions,monitor structural health,and support proactive maintenance practices,thereby ensuring the safety and longevity of critical infrastructure. 展开更多
关键词 Structural Health Monitoring(SHM) BRIDGES big model Convolutional neural network(cnn) Finite Element Method(FEM)
下载PDF
Modified imperialist competitive algorithm-based neural network to determine shear strength of concrete beams reinforced with FRP 被引量:6
2
作者 Amir HASANZADE-INALLU Panam ZARFAM Mehdi NIKOO 《Journal of Central South University》 SCIE EI CAS CSCD 2019年第11期3156-3174,共19页
Fiber reinforced polymers (FRPs), unlike steel, are corrosion-resistant and therefore are of interest;however, their use is hindered because their brittle shear is formulated in most specifications using limited data ... Fiber reinforced polymers (FRPs), unlike steel, are corrosion-resistant and therefore are of interest;however, their use is hindered because their brittle shear is formulated in most specifications using limited data available at the time. We aimed to predict the shear strength of concrete beams reinforced with FRP bars and without stirrups by compiling a relatively large database of 198 previously published test results (available in appendix). To model shear strength, an artificial neural network was trained by an ensemble of Levenberg-Marquardt and imperialist competitive algorithms. The results suggested superior accuracy of model compared to equations available in specifications and literature. 展开更多
关键词 concrete shear strength fiber reinforced polymer (FRP) artificial neural networks (ANNs) Levenberg-Marquardt algorithm imperialist competitive algorithm (ICA)
下载PDF
New results on global exponential stability of competitive neural networks with different time scales and time-varying delays 被引量:1
3
作者 崔宝同 陈君 楼旭阳 《Chinese Physics B》 SCIE EI CAS CSCD 2008年第5期1670-1677,共8页
This paper studies the global exponential stability of competitive neural networks with different time scales and time-varying delays. By using the method of the proper Lyapunov functions and inequality technique, som... This paper studies the global exponential stability of competitive neural networks with different time scales and time-varying delays. By using the method of the proper Lyapunov functions and inequality technique, some sufficient conditions are presented for global exponential stability of delay competitive neural networks with different time scales. These conditions obtained have important leading significance in the designs and applications of global exponential stability for competitive neural networks. Finally, an example with its simulation is provided to demonstrate the usefulness of the proposed criteria. 展开更多
关键词 competitive neural network different time scale global exponential stability DELAY
下载PDF
A SPEECH RECOGNITION METHOD USING COMPETITIVE AND SELECTIVE LEARNING NEURAL NETWORKS
4
作者 徐雄 胡光锐 严永红 《Journal of Shanghai Jiaotong university(Science)》 EI 2000年第2期10-13,共4页
On the basis of asymptotic theory of Gersho, the isodistortion principle of vector clustering was discussed and a kind of competitive and selective learning method (CSL) which may avoid local optimization and have exc... On the basis of asymptotic theory of Gersho, the isodistortion principle of vector clustering was discussed and a kind of competitive and selective learning method (CSL) which may avoid local optimization and have excellent result in application to clusters of HMM model was also proposed. In combining the parallel, self organizational hierarchical neural networks (PSHNN) to reclassify the scores of every form output by HMM, the CSL speech recognition rate is obviously elevated. 展开更多
关键词 SPEECH recognition competitive LEARNING classification neural networks Document code:A
下载PDF
Research of Dynamic Competitive Learning in Neural Networks
5
作者 PANHao CENLi ZHONGLuo 《Wuhan University Journal of Natural Sciences》 EI CAS 2005年第2期368-370,共3页
Introduce a method of generation of new units within a cluster and aalgorithm of generating new clusters. The model automatically builds up its dynamically growinginternal representation structure during the learning ... Introduce a method of generation of new units within a cluster and aalgorithm of generating new clusters. The model automatically builds up its dynamically growinginternal representation structure during the learning process. Comparing model with other typicalclassification algorithm such as the Kohonen's self-organizing map, the model realizes a multilevelclassification of the input pattern with an optional accuracy and gives a strong support possibilityfor the parallel computational main processor. The idea is suitable for the high-level storage ofcomplex datas structures for object recognition. 展开更多
关键词 dynamic competitive learning knowledge representation neural network
下载PDF
An Interval-valued Fuzzy Competitive Neural Network
6
作者 邓冠男 邹开其 《Journal of Donghua University(English Edition)》 EI CAS 2006年第6期137-140,共4页
Because interval value is quite natural in clustering, an interval-valued fuzzy competitive neural network is proposed. Firstly, this paper proposes several definitions of distance relating to interval number. And the... Because interval value is quite natural in clustering, an interval-valued fuzzy competitive neural network is proposed. Firstly, this paper proposes several definitions of distance relating to interval number. And then, it indicates the method of preprocessing input data, the structure of the network and the learning algorithm of the interval-valued fuzzy competitive neural network. This paper also analyses the principle of the learning algorithm. At last, an experiment is used to test the validity of the network. 展开更多
关键词 fuzzy competitive neural network interval value distance.
下载PDF
Development of a convolutional neural network based geomechanical upscaling technique for heterogeneous geological reservoir 被引量:1
7
作者 Zhiwei Ma Xiaoyan Ou Bo Zhang 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第6期2111-2125,共15页
Geomechanical assessment using coupled reservoir-geomechanical simulation is becoming increasingly important for analyzing the potential geomechanical risks in subsurface geological developments.However,a robust and e... Geomechanical assessment using coupled reservoir-geomechanical simulation is becoming increasingly important for analyzing the potential geomechanical risks in subsurface geological developments.However,a robust and efficient geomechanical upscaling technique for heterogeneous geological reservoirs is lacking to advance the applications of three-dimensional(3D)reservoir-scale geomechanical simulation considering detailed geological heterogeneities.Here,we develop convolutional neural network(CNN)proxies that reproduce the anisotropic nonlinear geomechanical response caused by lithological heterogeneity,and compute upscaled geomechanical properties from CNN proxies.The CNN proxies are trained using a large dataset of randomly generated spatially correlated sand-shale realizations as inputs and simulation results of their macroscopic geomechanical response as outputs.The trained CNN models can provide the upscaled shear strength(R^(2)>0.949),stress-strain behavior(R^(2)>0.925),and volumetric strain changes(R^(2)>0.958)that highly agree with the numerical simulation results while saving over two orders of magnitude of computational time.This is a major advantage in computing the upscaled geomechanical properties directly from geological realizations without the need to perform local numerical simulations to obtain the geomechanical response.The proposed CNN proxybased upscaling technique has the ability to(1)bridge the gap between the fine-scale geocellular models considering geological uncertainties and computationally efficient geomechanical models used to assess the geomechanical risks of large-scale subsurface development,and(2)improve the efficiency of numerical upscaling techniques that rely on local numerical simulations,leading to significantly increased computational time for uncertainty quantification using numerous geological realizations. 展开更多
关键词 Upscaling Lithological heterogeneity Convolutional neural network(cnn) Anisotropic shear strength Nonlinear stressestrain behavior
下载PDF
基于CNN-Swin Transformer Network的LPI雷达信号识别
8
作者 苏琮智 杨承志 +2 位作者 邴雨晨 吴宏超 邓力洪 《现代雷达》 CSCD 北大核心 2024年第3期59-65,共7页
针对在低信噪比(SNR)条件下,低截获概率雷达信号调制方式识别准确率低的问题,提出一种基于Transformer和卷积神经网络(CNN)的雷达信号识别方法。首先,引入Swin Transformer模型并在模型前端设计CNN特征提取层构建了CNN+Swin Transforme... 针对在低信噪比(SNR)条件下,低截获概率雷达信号调制方式识别准确率低的问题,提出一种基于Transformer和卷积神经网络(CNN)的雷达信号识别方法。首先,引入Swin Transformer模型并在模型前端设计CNN特征提取层构建了CNN+Swin Transformer网络(CSTN),然后利用时频分析获取雷达信号的时频特征,对图像进行预处理后输入CSTN模型进行训练,由网络的底部到顶部不断提取图像更丰富的语义信息,最后通过Softmax分类器对六类不同调制方式信号进行分类识别。仿真实验表明:在SNR为-18 dB时,该方法对六类典型雷达信号的平均识别率达到了94.26%,证明了所提方法的可行性。 展开更多
关键词 低截获概率雷达 信号调制方式识别 Swin Transformer网络 卷积神经网络 时频分析
下载PDF
Coal/Gangue Volume Estimation with Convolutional Neural Network and Separation Based on Predicted Volume and Weight
9
作者 Zenglun Guan Murad S.Alfarzaeai +2 位作者 Eryi Hu Taqiaden Alshmeri Wang Peng 《Computers, Materials & Continua》 SCIE EI 2024年第4期279-306,共28页
In the coal mining industry,the gangue separation phase imposes a key challenge due to the high visual similaritybetween coal and gangue.Recently,separation methods have become more intelligent and efficient,using new... In the coal mining industry,the gangue separation phase imposes a key challenge due to the high visual similaritybetween coal and gangue.Recently,separation methods have become more intelligent and efficient,using newtechnologies and applying different features for recognition.One such method exploits the difference in substancedensity,leading to excellent coal/gangue recognition.Therefore,this study uses density differences to distinguishcoal from gangue by performing volume prediction on the samples.Our training samples maintain a record of3-side images as input,volume,and weight as the ground truth for the classification.The prediction process relieson a Convolutional neural network(CGVP-CNN)model that receives an input of a 3-side image and then extractsthe needed features to estimate an approximation for the volume.The classification was comparatively performedvia ten different classifiers,namely,K-Nearest Neighbors(KNN),Linear Support Vector Machines(Linear SVM),Radial Basis Function(RBF)SVM,Gaussian Process,Decision Tree,Random Forest,Multi-Layer Perceptron(MLP),Adaptive Boosting(AdaBosst),Naive Bayes,and Quadratic Discriminant Analysis(QDA).After severalexperiments on testing and training data,results yield a classification accuracy of 100%,92%,95%,96%,100%,100%,100%,96%,81%,and 92%,respectively.The test reveals the best timing with KNN,which maintained anaccuracy level of 100%.Assessing themodel generalization capability to newdata is essential to ensure the efficiencyof the model,so by applying a cross-validation experiment,the model generalization was measured.The useddataset was isolated based on the volume values to ensure the model generalization not only on new images of thesame volume but with a volume outside the trained range.Then,the predicted volume values were passed to theclassifiers group,where classification reported accuracy was found to be(100%,100%,100%,98%,88%,87%,100%,87%,97%,100%),respectively.Although obtaining a classification with high accuracy is the main motive,this workhas a remarkable reduction in the data preprocessing time compared to related works.The CGVP-CNN modelmanaged to reduce the data preprocessing time of previous works to 0.017 s while maintaining high classificationaccuracy using the estimated volume value. 展开更多
关键词 COAL coal gangue convolutional neural network cnn object classification volume estimation separation system
下载PDF
Downscaling Seasonal Precipitation Forecasts over East Africa with Deep Convolutional Neural Networks
10
作者 Temesgen Gebremariam ASFAW Jing-Jia LUO 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2024年第3期449-464,共16页
This study assesses the suitability of convolutional neural networks(CNNs) for downscaling precipitation over East Africa in the context of seasonal forecasting. To achieve this, we design a set of experiments that co... This study assesses the suitability of convolutional neural networks(CNNs) for downscaling precipitation over East Africa in the context of seasonal forecasting. To achieve this, we design a set of experiments that compare different CNN configurations and deployed the best-performing architecture to downscale one-month lead seasonal forecasts of June–July–August–September(JJAS) precipitation from the Nanjing University of Information Science and Technology Climate Forecast System version 1.0(NUIST-CFS1.0) for 1982–2020. We also perform hyper-parameter optimization and introduce predictors over a larger area to include information about the main large-scale circulations that drive precipitation over the East Africa region, which improves the downscaling results. Finally, we validate the raw model and downscaled forecasts in terms of both deterministic and probabilistic verification metrics, as well as their ability to reproduce the observed precipitation extreme and spell indicator indices. The results show that the CNN-based downscaling consistently improves the raw model forecasts, with lower bias and more accurate representations of the observed mean and extreme precipitation spatial patterns. Besides, CNN-based downscaling yields a much more accurate forecast of extreme and spell indicators and reduces the significant relative biases exhibited by the raw model predictions. Moreover, our results show that CNN-based downscaling yields better skill scores than the raw model forecasts over most portions of East Africa. The results demonstrate the potential usefulness of CNN in downscaling seasonal precipitation predictions over East Africa,particularly in providing improved forecast products which are essential for end users. 展开更多
关键词 East Africa seasonal precipitation forecasting DOWNSCALING deep learning convolutional neural networks(cnns)
下载PDF
Prediction of constrained modulus for granular soil using 3D discrete element method and convolutional neural networks
11
作者 Tongwei Zhang Shuang Li +1 位作者 Huanzhi Yang Fanyu Zhang 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第11期4769-4781,共13页
To efficiently predict the mechanical parameters of granular soil based on its random micro-structure,this study proposed a novel approach combining numerical simulation and machine learning algorithms.Initially,3500 ... To efficiently predict the mechanical parameters of granular soil based on its random micro-structure,this study proposed a novel approach combining numerical simulation and machine learning algorithms.Initially,3500 simulations of one-dimensional compression tests on coarse-grained sand using the three-dimensional(3D)discrete element method(DEM)were conducted to construct a database.In this process,the positions of the particles were randomly altered,and the particle assemblages changed.Interestingly,besides confirming the influence of particle size distribution parameters,the stress-strain curves differed despite an identical gradation size statistic when the particle position varied.Subsequently,the obtained data were partitioned into training,validation,and testing datasets at a 7:2:1 ratio.To convert the DEM model into a multi-dimensional matrix that computers can recognize,the 3D DEM models were first sliced to extract multi-layer two-dimensional(2D)cross-sectional data.Redundant information was then eliminated via gray processing,and the data were stacked to form a new 3D matrix representing the granular soil’s fabric.Subsequently,utilizing the Python language and Pytorch framework,a 3D convolutional neural networks(CNNs)model was developed to establish the relationship between the constrained modulus obtained from DEM simulations and the soil’s fabric.The mean squared error(MSE)function was utilized to assess the loss value during the training process.When the learning rate(LR)fell within the range of 10-5e10-1,and the batch sizes(BSs)were 4,8,16,32,and 64,the loss value stabilized after 100 training epochs in the training and validation dataset.For BS?32 and LR?10-3,the loss reached a minimum.In the testing set,a comparative evaluation of the predicted constrained modulus from the 3D CNNs versus the simulated modulus obtained via DEM reveals a minimum mean absolute percentage error(MAPE)of 4.43%under the optimized condition,demonstrating the accuracy of this approach.Thus,by combining DEM and CNNs,the variation of soil’s mechanical characteristics related to its random fabric would be efficiently evaluated by directly tracking the particle assemblages. 展开更多
关键词 Soil structure Constrained modulus Discrete element model(DEM) Convolutional neural networks(cnns) Evaluation of error
下载PDF
Review of Artificial Intelligence for Oil and Gas Exploration: Convolutional Neural Network Approaches and the U-Net 3D Model
12
作者 Weiyan Liu 《Open Journal of Geology》 CAS 2024年第4期578-593,共16页
Deep learning, especially through convolutional neural networks (CNN) such as the U-Net 3D model, has revolutionized fault identification from seismic data, representing a significant leap over traditional methods. Ou... Deep learning, especially through convolutional neural networks (CNN) such as the U-Net 3D model, has revolutionized fault identification from seismic data, representing a significant leap over traditional methods. Our review traces the evolution of CNN, emphasizing the adaptation and capabilities of the U-Net 3D model in automating seismic fault delineation with unprecedented accuracy. We find: 1) The transition from basic neural networks to sophisticated CNN has enabled remarkable advancements in image recognition, which are directly applicable to analyzing seismic data. The U-Net 3D model, with its innovative architecture, exemplifies this progress by providing a method for detailed and accurate fault detection with reduced manual interpretation bias. 2) The U-Net 3D model has demonstrated its superiority over traditional fault identification methods in several key areas: it has enhanced interpretation accuracy, increased operational efficiency, and reduced the subjectivity of manual methods. 3) Despite these achievements, challenges such as the need for effective data preprocessing, acquisition of high-quality annotated datasets, and achieving model generalization across different geological conditions remain. Future research should therefore focus on developing more complex network architectures and innovative training strategies to refine fault identification performance further. Our findings confirm the transformative potential of deep learning, particularly CNN like the U-Net 3D model, in geosciences, advocating for its broader integration to revolutionize geological exploration and seismic analysis. 展开更多
关键词 Deep Learning Convolutional neural networks (cnn) Seismic Fault Identification U-Net 3D Model Geological Exploration
下载PDF
Convolutional Neural Network-Based Deep Q-Network (CNN-DQN) Resource Management in Cloud Radio Access Network 被引量:2
13
作者 Amjad Iqbal Mau-Luen Tham Yoong Choon Chang 《China Communications》 SCIE CSCD 2022年第10期129-142,共14页
The recent surge of mobile subscribers and user data traffic has accelerated the telecommunication sector towards the adoption of the fifth-generation (5G) mobile networks. Cloud radio access network (CRAN) is a promi... The recent surge of mobile subscribers and user data traffic has accelerated the telecommunication sector towards the adoption of the fifth-generation (5G) mobile networks. Cloud radio access network (CRAN) is a prominent framework in the 5G mobile network to meet the above requirements by deploying low-cost and intelligent multiple distributed antennas known as remote radio heads (RRHs). However, achieving the optimal resource allocation (RA) in CRAN using the traditional approach is still challenging due to the complex structure. In this paper, we introduce the convolutional neural network-based deep Q-network (CNN-DQN) to balance the energy consumption and guarantee the user quality of service (QoS) demand in downlink CRAN. We first formulate the Markov decision process (MDP) for energy efficiency (EE) and build up a 3-layer CNN to capture the environment feature as an input state space. We then use DQN to turn on/off the RRHs dynamically based on the user QoS demand and energy consumption in the CRAN. Finally, we solve the RA problem based on the user constraint and transmit power to guarantee the user QoS demand and maximize the EE with a minimum number of active RRHs. In the end, we conduct the simulation to compare our proposed scheme with nature DQN and the traditional approach. 展开更多
关键词 energy efficiency(EE) markov decision process(MDP) convolutional neural network(cnn) cloud RAN deep Q-network(DQN)
下载PDF
Optimization of a crude distillation unit using a combination of wavelet neural network and line-up competition algorithm 被引量:3
14
作者 Bin Shi Xu Yang Liexiang Yan 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2017年第8期1013-1021,共9页
The modeling and optimization of an industrial-scale crude distillation unit (CDU) are addressed. The main spec- ifications and base conditions of CDU are taken from a crude oil refinery in Wuhan, China. For modelin... The modeling and optimization of an industrial-scale crude distillation unit (CDU) are addressed. The main spec- ifications and base conditions of CDU are taken from a crude oil refinery in Wuhan, China. For modeling of a com- plicated CDU, an improved wavelet neural network (WNN) is presented to model the complicated CDU, in which novel parametric updating laws are developed to precisely capture the characteristics of CDU. To address CDU in an economically optimal manner, an economic optimization algorithm under prescribed constraints is presented. By using a combination of WNN-based optimization model and line-up competition algorithm (LCA), the supe- rior performance of the proposed approach is verified. Compared with the base operating condition, it is validat- ed that the increments of products including kerosene and diesel are up to 20% at least by increasing less than 5% duties of intermediate coolers such as second pump-around (PA2) and third Dump-around (PA3). 展开更多
关键词 Crude oil distillation Wavelet neural network Line-up competition algorithm Optimization
下载PDF
Audiovisual speech recognition based on a deep convolutional neural network
15
作者 Shashidhar Rudregowda Sudarshan Patilkulkarni +2 位作者 Vinayakumar Ravi Gururaj H.L. Moez Krichen 《Data Science and Management》 2024年第1期25-34,共10页
Audiovisual speech recognition is an emerging research topic.Lipreading is the recognition of what someone is saying using visual information,primarily lip movements.In this study,we created a custom dataset for India... Audiovisual speech recognition is an emerging research topic.Lipreading is the recognition of what someone is saying using visual information,primarily lip movements.In this study,we created a custom dataset for Indian English linguistics and categorized it into three main categories:(1)audio recognition,(2)visual feature extraction,and(3)combined audio and visual recognition.Audio features were extracted using the mel-frequency cepstral coefficient,and classification was performed using a one-dimension convolutional neural network.Visual feature extraction uses Dlib and then classifies visual speech using a long short-term memory type of recurrent neural networks.Finally,integration was performed using a deep convolutional network.The audio speech of Indian English was successfully recognized with accuracies of 93.67%and 91.53%,respectively,using testing data from 200 epochs.The training accuracy for visual speech recognition using the Indian English dataset was 77.48%and the test accuracy was 76.19%using 60 epochs.After integration,the accuracies of audiovisual speech recognition using the Indian English dataset for training and testing were 94.67%and 91.75%,respectively. 展开更多
关键词 Audiovisual speech recognition Custom dataset 1D Convolution neural network(cnn) Deep cnn(Dcnn) Long short-term memory(LSTM) LIPREADING Dlib Mel-frequency cepstral coefficient(MFCC)
下载PDF
Detection of Omicron Caused Pneumonia from Radiology Images Using Convolution Neural Network(CNN)
16
作者 Arfat Ahmad Khan Malik Muhammad Ali Shahid +4 位作者 Rab Nawaz Bashir Salman Iqbal Arshad Shehzad Ahmad Shahid Javeria Maqbool Chitapong Wechtaisong 《Computers, Materials & Continua》 SCIE EI 2023年第2期3743-3761,共19页
COVID-19 disease caused by the SARS-CoV-2 virus has created social and economic disruption across theworld.The ability of the COVID-19 virus to quickly mutate and transfer has created serious concerns across the world... COVID-19 disease caused by the SARS-CoV-2 virus has created social and economic disruption across theworld.The ability of the COVID-19 virus to quickly mutate and transfer has created serious concerns across the world.It is essential to detectCOVID-19 infection caused by different variants to take preventive measures accordingly.The existing method of detection of infections caused by COVID-19 and its variants is costly and time-consuming.The impacts of theCOVID-19 pandemic in developing countries are very drastic due to the unavailability of medical facilities and infrastructure to handle the pandemic.Pneumonia is the major symptom of COVID-19 infection.The radiology of the lungs in varies in the case of bacterial pneumonia as compared to COVID-19-caused pneumonia.The pattern of pneumonia in lungs in radiology images can also be used to identify the cause associated with pneumonia.In this paper,we propose the methodology of identifying the cause(either due to COVID-19 or other types of infections)of pneumonia from radiology images.Furthermore,because different variants of COVID-19 lead to different patterns of pneumonia,the proposed methodology identifies pneumonia,the COVID-19 caused pneumonia,and Omicron caused pneumonia from the radiology images.To fulfill the above-mentioned tasks,we have used three Convolution Neural Networks(CNNs)at each stage of the proposed methodology.The results unveil that the proposed step-by-step solution enhances the accuracy of pneumonia detection along with finding its cause,despite having a limited dataset. 展开更多
关键词 COVID-19 PNEUMONIA radiology images omicron convolution neural network(cnn) microscopy
下载PDF
Text Feature Extraction and Classification Based on Convolutional Neural Network(CNN)
17
作者 Taohong Zhang Cunfang Li +3 位作者 Nuan Cao Rui Ma ShaoHua Zhang Nan Ma 《国际计算机前沿大会会议论文集》 2017年第1期119-121,共3页
With the high-speed development of the Internet,a growing number of Internet users like giving their subjective comments in the BBS,blog and shopping website.These comments contains critics’attitudes,emotions,views a... With the high-speed development of the Internet,a growing number of Internet users like giving their subjective comments in the BBS,blog and shopping website.These comments contains critics’attitudes,emotions,views and other information.Using these information reasonablely can help understand the social public opinion and make a timely response and help dealer to improve quality and service of products and make consumers know merchandise.This paper mainly discusses using convolutional neural network(CNN)for the operation of the text feature extraction.The concrete realization are discussed.Then combining with other text classifier make class operation.The experiment result shows the effectiveness of the method which is proposed in this paper. 展开更多
关键词 Convolutional neural network(cnn) TEXT FEATURE EXTRACTION CLASS operation
下载PDF
General Decay Synchronization of Competitive Fuzzy Neural Networks Involving Time Delays and Right-Hand Discontinuous Activation
18
作者 Mairemunisa Abudusaimaiti Abuduwali Abudukeremu 《Open Journal of Applied Sciences》 2024年第11期3243-3260,共18页
This paper discusses the general decay synchronization problem for a class of fuzzy competitive neural networks with time-varying delays and discontinuous activation functions. Firstly, based on the concept of Filippo... This paper discusses the general decay synchronization problem for a class of fuzzy competitive neural networks with time-varying delays and discontinuous activation functions. Firstly, based on the concept of Filippov solutions for right-hand discontinuous systems, some sufficient conditions for general decay synchronization of the considered system are obtained via designing a nonlinear feedback controller and applying discontinuous differential equation theory, Lyapunov functional methods and some inequality techniques. Finally, one numerical example is given to verify the effectiveness of the proposed theoretical results. The general decay synchronization considered in this article can better estimate the convergence rate of the system, and the exponential synchronization and polynomial synchronization can be seen as its special cases. 展开更多
关键词 competitive neural network Fuzzy General Decay Synchronization Discontinuous Activation Function
下载PDF
基于CNN-LSTM的大坝变形组合预测模型研究 被引量:2
19
作者 王润英 林思雨 +1 位作者 方卫华 赵凯文 《水力发电》 CAS 2024年第1期37-41,52,共6页
为了提高大坝变形预测模型精度和泛化能力,建立了一种基于卷积神经网络(Convolutional neural networks,CNN)与深度学习长短期记忆(Long short-term memory,LSTM)神经网络的组合预测模型CNN-LSTM。该模型先利用CNN提取大坝变形监测时间... 为了提高大坝变形预测模型精度和泛化能力,建立了一种基于卷积神经网络(Convolutional neural networks,CNN)与深度学习长短期记忆(Long short-term memory,LSTM)神经网络的组合预测模型CNN-LSTM。该模型先利用CNN提取大坝变形监测时间序列的特征,再利用LSTM生成特征描述,该模型精度高、泛化能力强。以柏叶口水库混凝土面板堆石坝为例,经过CNN-LSTM模型计算,将模型变形预测值与原型监测资料进行对比,再与LSTM模型及CNN模型的预测结果进行对比。结果表明,CNN-LSTM模型预测值最接近监测资料实测结果。 展开更多
关键词 大坝变形 卷积神经网络 LSTM神经网络 变形预测 预测精度 柏叶口水库
下载PDF
基于CNN‑LSTM‑SE的心电图分类算法研究 被引量:2
20
作者 王建荣 邓黎明 +1 位作者 程伟 李国翚 《测试技术学报》 2024年第3期264-273,共10页
心血管疾病是我国死亡率较高的疾病之一,通过观察心电图来判断心电信号是否出现异常能够对心血管疾病进行预防和筛查。由于心电图数据规模大且繁杂,临床医护人员在心电图筛查时,工作负担大且容易出现误诊或漏诊的情况。为了提高心电图... 心血管疾病是我国死亡率较高的疾病之一,通过观察心电图来判断心电信号是否出现异常能够对心血管疾病进行预防和筛查。由于心电图数据规模大且繁杂,临床医护人员在心电图筛查时,工作负担大且容易出现误诊或漏诊的情况。为了提高心电图的筛查效率、减少医护人员的压力,提出了一种基于卷积神经网络、长短期记忆神经网络和SE网络的心电图分类算法模型(CNN-LSTM-SE),该模型将心电图分成5种不同的类别。主要研究内容包括:选用MIT-BIH心律失常数据集作为心电信号的数据来源,使用巴特沃斯带通滤波器对心电信号进行去噪处理,通过Z-score方法对心电信号进行标准化处理,利用独热编码方法对心电信号标签进行编码,最后使用处理后的心电数据对所提算法模型进行训练和测试。实验结果表明:所提模型相较于其它模型,能够有效提高心电图分类的准确性,在实验数据集上的分类准确率达到99.1%。 展开更多
关键词 心律失常 心电图 卷积神经网络 SE网络 长短期记忆神经网络
下载PDF
上一页 1 2 189 下一页 到第
使用帮助 返回顶部