China is by far the largest producer of tobacco products in the world. As a big tax source, tobacco industry brings about 10%of China's annual income.At present tobacco industry is under the administrative monopol...China is by far the largest producer of tobacco products in the world. As a big tax source, tobacco industry brings about 10%of China's annual income.At present tobacco industry is under the administrative monopoly management in China. The nation's policy and management mechanism greatly influence the competition structure of tobbacco industry. Due to the double character of tobacco, the country generally imposes a high tax and limits total product output in order to control the tobacco market. Therefore, the price signal of tobacco market is distorted and to a large extent the competition of the industry is far from a free one. The cigarette production is in a multi element competition style within the nation's planning system. In other words, administrative monopoly and over competition exist simultaneously in China's tobacco industry. The country predetermines the output quota of each cigarette manufacturing enterprise and the actual production outputs of these enterprises could be adjusted through the quota trades among them. The competition in tobacco industry is mainly represented in 3 modes, i.e.production output competition based on quota trades, value added competition in producing and marketing, and the niche market competition based on product classification.展开更多
The mode hopping phenomenon induced by optical feedback in single-mode microchip Nd:YAG lasers is presented. With optical feedback, mode hopping strongly depends on two factors: the ratio of external cavity length t...The mode hopping phenomenon induced by optical feedback in single-mode microchip Nd:YAG lasers is presented. With optical feedback, mode hopping strongly depends on two factors: the ratio of external cavity length to intra-cavity length, and initial gains of the two hopping modes, When external cavity length equals an integral multiple of intracavity length, there is almost no mode hopping. However, if the external cavity length does not equal an integral multiple of intra-cavity length, mode hopping occurs. The ratio of external cavity length to intra-cavity length determines the position of two-mode hopping, The initial gains of the two hopping modes determine the corresponding peak values and oscillating periods of them in the intensity modulation curves.展开更多
Degradation and overstress failures occur in many electronic systems in which the operation load and environmental conditions are complex.The dependency of them called dependent competing failure process(DCFP),has bee...Degradation and overstress failures occur in many electronic systems in which the operation load and environmental conditions are complex.The dependency of them called dependent competing failure process(DCFP),has been widely studied.Electronic system may experience mutual effects of degradation and shocks,they are considered to be interdependent.Both the degradation and the shock processes will decrease the limit of system and cause cumulative effect.Finally,the competition of hard and soft failure will cause the system failure.Based on the failure mechanism accumulation theory,this paper constructs the shock-degradation acceleration and the threshold descent model,and a system reliability model established by using these two models.The mutually DCFP effect of electronic system interaction has been decomposed into physical correlation of failure,including acceleration,accumulation and competition.As a case,a reliability of electronic system in aeronautical system has been analyzed with the proposed method.The method proposed is based on failure physical evaluation,and could provide important reference for quantitative evaluation and design improvement of the newly designed system in case of data deficiency.展开更多
A novel evaluation term and a more reasonable criterion,which is described by a new parameter of brightness factor for active large mode area fiber design,are presented.The brightness factor evaluation method is based...A novel evaluation term and a more reasonable criterion,which is described by a new parameter of brightness factor for active large mode area fiber design,are presented.The brightness factor evaluation method is based on the transverse mode competition mechanism in fiber lasers and amplifiers.The brightness factor can be seen as a description of fiber general property since it can represent the output laser brightness of the fiber laser system and because of its ability to resist the nonlinear effect.A core-doped active large pitch fiber with a core diameter of 190 μm and a mode-field diameter of180 μm is designed by this method,and the designed fiber allows effective single-mode operation.展开更多
Theoretical and experimental studies of the influence of the mode competition on the output beam quality of fiber amplifiers are presented. Rate equations and modal decomposition method are used in the theoretical mod...Theoretical and experimental studies of the influence of the mode competition on the output beam quality of fiber amplifiers are presented. Rate equations and modal decomposition method are used in the theoretical model. In the experiment, the output beam-quality factor of a fiber amplifier, which is based on a Yb-doped double-clad large mode area fiber as a function of the seed beam quality and the pump power of the amplifier, is measured. The experimental results are consistent with the theoretical analysis.展开更多
A vortex-induced vibration(VIV)experiment on three side-by-side risers subjected to a uniform flow was carried out in a combined wave-current flume.The dynamic features of interference effect on three side-by-side ris...A vortex-induced vibration(VIV)experiment on three side-by-side risers subjected to a uniform flow was carried out in a combined wave-current flume.The dynamic features of interference effect on three side-by-side risers were investigated by varying fluid velocity and inter-riser spacing.The distributions of dimensionless displacement,dominant frequency,and displacement trajectory of the model risers were measured using mode decomposition and wavelet transform techniques.The coupled interference of inter-riser fluid to adjacent risers at different spacings was disclosed by introducing the"interference ratio"concept.The results show that at spacings smaller than 6.0 D,the three model risers display appreciable deviations in their displacement responses in cross-flow or in-line direction,attributable to the strong proximity disturbance and wake interference between the risers.When the spacing is increased to 8.0 D,wake interference still makes great difference to the dynamic response of the risers in both directions.As reduced velocity increases,the three risers show higher agreement with an isolated riser in overall dominant vibration frequency in CF direction than that in IL direction at all spacings and the side risers,although symmetrically placed,do not vibrate symmetrically,as a result of the steady deflection of clearance flow within the riser group.Interference effect results in a remarkable unsteady mode competition within the risers;quantitation of the interference levels for the three risers at different spacings with interference ratio revealed that under low flow velocities and large spacing ratios,clearance flow constitutes a non-neglectable interferer for three side-by-side risers.展开更多
This paper presents the anisotropic optical feedback of a single frequency intra-cavity He-Ne laser. A novel phenomenon was discovered that the laser output an elliptical polarized frequency instead of the initial lin...This paper presents the anisotropic optical feedback of a single frequency intra-cavity He-Ne laser. A novel phenomenon was discovered that the laser output an elliptical polarized frequency instead of the initial linear polarized one. Two intensities with a phase difference were detected, both of which were modulated in the form of cosine wave and a fringe shift corresponds to a λ/2 movement of the feedback mirror. The phase difference can be continuously modulated by the wave plate in the external cavity. Frequency stabilization was used to stabilize the laser frequency so as to enlarge the measuring range and improve the measurement precision. This anisotropic optical feedback system offers a potential displacement measurement technology with the function of subdivision of λ/2 and in-time direction judgment. The three-mirror Fabry Perot cavity model is used to present the experimental results. Given the lack of need of lasing adjustment, this full intra-cavity laser can significantly improve the simplicity and stability of the optical feedback system.展开更多
Strong optical feedback in a birefringent dual frequency He-Ne laser with a high reflectivity feedback mirror has been investigated for the first time. The output characteristics of two orthogonally polarized modes ar...Strong optical feedback in a birefringent dual frequency He-Ne laser with a high reflectivity feedback mirror has been investigated for the first time. The output characteristics of two orthogonally polarized modes are demonstrated in two different optical feedback cases: one is for both modes being fed back and the other is for only one of the modes being fed back. Strong mode competition can be observed between the two modes with strong optical feedback, And when one mode's intensity is near its maximum, the other mode is nearly extinguished. When both modes are fed back into the laser cavity, the mode competition is stronger than when only one mode is fed back, The difference in initial intensity between the two orthogonally polarized modes plays an important role in the mode competition, which has been experimentally and theoretically demonstrated.展开更多
We use traveling wave coupling theory to investigate the time domain characteristics of tapered semiconductor lasers with DBR gratings.We analyze the influence of the length of second order gratings on the power and s...We use traveling wave coupling theory to investigate the time domain characteristics of tapered semiconductor lasers with DBR gratings.We analyze the influence of the length of second order gratings on the power and spectrum of output light,and optimizing the length of gratings,in order to reduce the mode competition effect in the device,and obtain the high power output light wave with good longitudinal mode characteristics.展开更多
The gyrotron is one of the most promising high-power millimeter-wave sources for electron cyclotron resonance heating(ECRH) in controlled thermal nuclear fusion experiments.In this paper,the design of a high-frequen...The gyrotron is one of the most promising high-power millimeter-wave sources for electron cyclotron resonance heating(ECRH) in controlled thermal nuclear fusion experiments.In this paper,the design of a high-frequency interaction cavity of a 1 MW/140 GHz gyrotron is described in detail.The cavity is designed by using eigen mode analysis and radio frequency(RF) behavior calculation.Rounded transitions at the input and output tapers are designed for reducing mode conversion.With the obtained cavity structure,non-linear self-consistent equations are adopted to calculate its output power and efficiency.A particle-in-cell(PIC) method is used to simulate the beam-wave interaction process for obtaining the resonant frequency and output power of the cavity.The PIC simulation results match considerably well with the results obtained by the non-linear self-consistent calculation.The cavity is currently under construction and will be integrated with other components for overall testing.展开更多
The output characteristics of optical feedback in a helium neon laser with a birefringent internal cavity are studied systematically in five different regions of the gain curve for the two orthogonally polarized modes...The output characteristics of optical feedback in a helium neon laser with a birefringent internal cavity are studied systematically in five different regions of the gain curve for the two orthogonally polarized modes. When the laser operates in the two end regions of the laser gain curve, one of the two orthogonally polarized modes will be a leading one in optical feedback. Strong mode competition can be observed. However, when the laser operates in the middle region of the laser gain curve, the two modes can oscillate equally with optical feedback. Besides the intensity of the two polarized lights, the total light intensity is also studied at the same time. M-shaped optical feedback curves are found. Particularly, when the average intensities of the two lights are comparable, the intensity modulation curve of the total light is doubled, which can be used to improve the resolution of an optical feedback system.展开更多
Prticle-in-cell(PIC) simulations demonstrated that,when the relativistic magnetron with diffraction output(MDO) is applied with a 410 kV voltage pulse,or when the relativistic magnetron with radial output is appli...Prticle-in-cell(PIC) simulations demonstrated that,when the relativistic magnetron with diffraction output(MDO) is applied with a 410 kV voltage pulse,or when the relativistic magnetron with radial output is applied with a 350 kV voltage pulse,electrons emitted from the cathode with high energy will strike the anode block wall.The emitted secondary electrons and backscattered electrons affect the interaction between electrons and RF fields induced by the operating modes,which decreases the output power in the radial output relativistic magnetron by about 15%(10%for the axial output relativistic magnetron),decreases the anode current by about 5%(5%for the axial output relativistic magnetron),and leads to a decrease of electronic efficiency by 8%(6%for the axial output relativistic magnetron).The peak value of the current formed by secondary and backscattered current equals nearly half of the amplitude of the anode current,which may help the growth of parasitic modes when the applied magnetic field is near the critical magnetic field separating neighboring modes.Thus,mode competition becomes more serious.展开更多
A new effect of transient mode competition in directly modulated DFB laser based on equivalent phase-shift (EPS) technique is presented and studied. Since there are multi-order reflections in EPS structure and if th...A new effect of transient mode competition in directly modulated DFB laser based on equivalent phase-shift (EPS) technique is presented and studied. Since there are multi-order reflections in EPS structure and if the 0th order subgrating is properly de- signed, the transient lasing of 0th order will occur during the rising time of the injection current. As a result, transient mode competition between -lst order (main mode) and 0th order will occur accordingly. This can consume redundant carrier and suppress the transient relaxation oscillation, which may be applied in some areas like on-off switching modulation of DFB semiconductor lasers. As an example, an equivalent n phase shift (n-EPS) is carefully designed to realize the effect. In such a laser the 0th order wavelength is in the margin of the material gain region and the -1st order wavelength is around the gain peak, while the stable single longitudinal mode (SLM) operation of the -lst order is guaranteed. The simulation investigation is performed. Good results with suppressed relaxation oscillation and 1.25 Gb/s directly on-off modulation (32 dB extinction ratio) are demonstrated. We believe it provides a new kind of method for on-off switching with high extinction ratio and weak relaxation oscillation.展开更多
The interaction of several anti-tumor metal complexes with dGMP have been investigated using trans-[en_(2)Os(h^(2)-H_(2))]^(2+)as a ^(1)H NMR probe in a competitive mode.Me_(2)SnCl_(2),Bu_(2)SnCl_(2),Et_(2)Sn(phen)Cl_...The interaction of several anti-tumor metal complexes with dGMP have been investigated using trans-[en_(2)Os(h^(2)-H_(2))]^(2+)as a ^(1)H NMR probe in a competitive mode.Me_(2)SnCl_(2),Bu_(2)SnCl_(2),Et_(2)Sn(phen)Cl_(2) and Et_(2)SnCl_(2) can bind to dGMP mainly via phosphate;Cp_(2)TiCl_(2) binds to dGMP mainly via phosphate and N_(7).The binding constant for(CH_(3))_(2)SnCl_(2) binding to phos-phate of dGMP exceeds 2.71×10^(4).The binding constant for Cp_(2)TiCl_(2) to phosphate is even greater than that of Sn(IV).Cis-platin has high affinity for both N_(7) and phosphate,but mainly for N_(7).Binding of the probe to N_(7) of dGMP reduces the binding affinity for phosphate of the same dGMP molecule by a factor of 5 to 6.Much the same factor is expected to apply to other metals containing agents interacting with dGMP.展开更多
文摘China is by far the largest producer of tobacco products in the world. As a big tax source, tobacco industry brings about 10%of China's annual income.At present tobacco industry is under the administrative monopoly management in China. The nation's policy and management mechanism greatly influence the competition structure of tobbacco industry. Due to the double character of tobacco, the country generally imposes a high tax and limits total product output in order to control the tobacco market. Therefore, the price signal of tobacco market is distorted and to a large extent the competition of the industry is far from a free one. The cigarette production is in a multi element competition style within the nation's planning system. In other words, administrative monopoly and over competition exist simultaneously in China's tobacco industry. The country predetermines the output quota of each cigarette manufacturing enterprise and the actual production outputs of these enterprises could be adjusted through the quota trades among them. The competition in tobacco industry is mainly represented in 3 modes, i.e.production output competition based on quota trades, value added competition in producing and marketing, and the niche market competition based on product classification.
基金Project supported by the National Natural Science Foundation of China (Grant No 60438010).
文摘The mode hopping phenomenon induced by optical feedback in single-mode microchip Nd:YAG lasers is presented. With optical feedback, mode hopping strongly depends on two factors: the ratio of external cavity length to intra-cavity length, and initial gains of the two hopping modes, When external cavity length equals an integral multiple of intracavity length, there is almost no mode hopping. However, if the external cavity length does not equal an integral multiple of intra-cavity length, mode hopping occurs. The ratio of external cavity length to intra-cavity length determines the position of two-mode hopping, The initial gains of the two hopping modes determine the corresponding peak values and oscillating periods of them in the intensity modulation curves.
基金supported by the National Natural Science Foundation of China(61503014,62073009)。
文摘Degradation and overstress failures occur in many electronic systems in which the operation load and environmental conditions are complex.The dependency of them called dependent competing failure process(DCFP),has been widely studied.Electronic system may experience mutual effects of degradation and shocks,they are considered to be interdependent.Both the degradation and the shock processes will decrease the limit of system and cause cumulative effect.Finally,the competition of hard and soft failure will cause the system failure.Based on the failure mechanism accumulation theory,this paper constructs the shock-degradation acceleration and the threshold descent model,and a system reliability model established by using these two models.The mutually DCFP effect of electronic system interaction has been decomposed into physical correlation of failure,including acceleration,accumulation and competition.As a case,a reliability of electronic system in aeronautical system has been analyzed with the proposed method.The method proposed is based on failure physical evaluation,and could provide important reference for quantitative evaluation and design improvement of the newly designed system in case of data deficiency.
基金supported by the National Natural Science Foundation of China(Grant No.61475081)
文摘A novel evaluation term and a more reasonable criterion,which is described by a new parameter of brightness factor for active large mode area fiber design,are presented.The brightness factor evaluation method is based on the transverse mode competition mechanism in fiber lasers and amplifiers.The brightness factor can be seen as a description of fiber general property since it can represent the output laser brightness of the fiber laser system and because of its ability to resist the nonlinear effect.A core-doped active large pitch fiber with a core diameter of 190 μm and a mode-field diameter of180 μm is designed by this method,and the designed fiber allows effective single-mode operation.
基金Project supported by the National Natural Science Foundation of China(Grant No.61307057)the State Key Laboratory of Tribology,Tsinghua University,China(Grant No.SKLT12B08)and the China Postdoctoral Science Foundation(Grant Nos.2012M520258 and 2013T60109)
文摘Theoretical and experimental studies of the influence of the mode competition on the output beam quality of fiber amplifiers are presented. Rate equations and modal decomposition method are used in the theoretical model. In the experiment, the output beam-quality factor of a fiber amplifier, which is based on a Yb-doped double-clad large mode area fiber as a function of the seed beam quality and the pump power of the amplifier, is measured. The experimental results are consistent with the theoretical analysis.
基金financially supported by the National Natural Science Foundation of China(Grant No.51709161)Shandong Province Young and Middle-Aged Scientists Research Awards Fund(Grant No.BS2015HZ017)+1 种基金Colleges and Universities of Shandong Province Science and Technology Plan Projects(Grant No.J16LH04)Key R&D Projects in Shandong Province(Grant No.2018GHY115045)。
文摘A vortex-induced vibration(VIV)experiment on three side-by-side risers subjected to a uniform flow was carried out in a combined wave-current flume.The dynamic features of interference effect on three side-by-side risers were investigated by varying fluid velocity and inter-riser spacing.The distributions of dimensionless displacement,dominant frequency,and displacement trajectory of the model risers were measured using mode decomposition and wavelet transform techniques.The coupled interference of inter-riser fluid to adjacent risers at different spacings was disclosed by introducing the"interference ratio"concept.The results show that at spacings smaller than 6.0 D,the three model risers display appreciable deviations in their displacement responses in cross-flow or in-line direction,attributable to the strong proximity disturbance and wake interference between the risers.When the spacing is increased to 8.0 D,wake interference still makes great difference to the dynamic response of the risers in both directions.As reduced velocity increases,the three risers show higher agreement with an isolated riser in overall dominant vibration frequency in CF direction than that in IL direction at all spacings and the side risers,although symmetrically placed,do not vibrate symmetrically,as a result of the steady deflection of clearance flow within the riser group.Interference effect results in a remarkable unsteady mode competition within the risers;quantitation of the interference levels for the three risers at different spacings with interference ratio revealed that under low flow velocities and large spacing ratios,clearance flow constitutes a non-neglectable interferer for three side-by-side risers.
基金supported by the National Natural Science Foundation of China (Grant No 60437010)
文摘This paper presents the anisotropic optical feedback of a single frequency intra-cavity He-Ne laser. A novel phenomenon was discovered that the laser output an elliptical polarized frequency instead of the initial linear polarized one. Two intensities with a phase difference were detected, both of which were modulated in the form of cosine wave and a fringe shift corresponds to a λ/2 movement of the feedback mirror. The phase difference can be continuously modulated by the wave plate in the external cavity. Frequency stabilization was used to stabilize the laser frequency so as to enlarge the measuring range and improve the measurement precision. This anisotropic optical feedback system offers a potential displacement measurement technology with the function of subdivision of λ/2 and in-time direction judgment. The three-mirror Fabry Perot cavity model is used to present the experimental results. Given the lack of need of lasing adjustment, this full intra-cavity laser can significantly improve the simplicity and stability of the optical feedback system.
基金Project supported by the Major Program of National Natural Science Foundation of China (Grant No 60438010).
文摘Strong optical feedback in a birefringent dual frequency He-Ne laser with a high reflectivity feedback mirror has been investigated for the first time. The output characteristics of two orthogonally polarized modes are demonstrated in two different optical feedback cases: one is for both modes being fed back and the other is for only one of the modes being fed back. Strong mode competition can be observed between the two modes with strong optical feedback, And when one mode's intensity is near its maximum, the other mode is nearly extinguished. When both modes are fed back into the laser cavity, the mode competition is stronger than when only one mode is fed back, The difference in initial intensity between the two orthogonally polarized modes plays an important role in the mode competition, which has been experimentally and theoretically demonstrated.
文摘We use traveling wave coupling theory to investigate the time domain characteristics of tapered semiconductor lasers with DBR gratings.We analyze the influence of the length of second order gratings on the power and spectrum of output light,and optimizing the length of gratings,in order to reduce the mode competition effect in the device,and obtain the high power output light wave with good longitudinal mode characteristics.
基金supported by International S&T Cooperation Program of China(No.2011DFA63190)China Postdoctoral Science Foundation(No.2014M552334)
文摘The gyrotron is one of the most promising high-power millimeter-wave sources for electron cyclotron resonance heating(ECRH) in controlled thermal nuclear fusion experiments.In this paper,the design of a high-frequency interaction cavity of a 1 MW/140 GHz gyrotron is described in detail.The cavity is designed by using eigen mode analysis and radio frequency(RF) behavior calculation.Rounded transitions at the input and output tapers are designed for reducing mode conversion.With the obtained cavity structure,non-linear self-consistent equations are adopted to calculate its output power and efficiency.A particle-in-cell(PIC) method is used to simulate the beam-wave interaction process for obtaining the resonant frequency and output power of the cavity.The PIC simulation results match considerably well with the results obtained by the non-linear self-consistent calculation.The cavity is currently under construction and will be integrated with other components for overall testing.
基金Project supported by the Major Program of the National Natural Science Foundation of China (Grant No 60438010).
文摘The output characteristics of optical feedback in a helium neon laser with a birefringent internal cavity are studied systematically in five different regions of the gain curve for the two orthogonally polarized modes. When the laser operates in the two end regions of the laser gain curve, one of the two orthogonally polarized modes will be a leading one in optical feedback. Strong mode competition can be observed. However, when the laser operates in the middle region of the laser gain curve, the two modes can oscillate equally with optical feedback. Besides the intensity of the two polarized lights, the total light intensity is also studied at the same time. M-shaped optical feedback curves are found. Particularly, when the average intensities of the two lights are comparable, the intensity modulation curve of the total light is doubled, which can be used to improve the resolution of an optical feedback system.
基金supported by National Natural Science Foundation of China(No.61302010)the Foundation of Science and Technology on High Power Microwave Laboratory,Central University Foundation(2013KW07)Work at the University of New Mexico in USA was supportedby ONR Grant N00014-13-1-0565
文摘Prticle-in-cell(PIC) simulations demonstrated that,when the relativistic magnetron with diffraction output(MDO) is applied with a 410 kV voltage pulse,or when the relativistic magnetron with radial output is applied with a 350 kV voltage pulse,electrons emitted from the cathode with high energy will strike the anode block wall.The emitted secondary electrons and backscattered electrons affect the interaction between electrons and RF fields induced by the operating modes,which decreases the output power in the radial output relativistic magnetron by about 15%(10%for the axial output relativistic magnetron),decreases the anode current by about 5%(5%for the axial output relativistic magnetron),and leads to a decrease of electronic efficiency by 8%(6%for the axial output relativistic magnetron).The peak value of the current formed by secondary and backscattered current equals nearly half of the amplitude of the anode current,which may help the growth of parasitic modes when the applied magnetic field is near the critical magnetic field separating neighboring modes.Thus,mode competition becomes more serious.
基金supported by the National Natural Science Foundation of China(Grant Nos.61306068 and 61435014)the Nature Science Foundation of Jiangsu Province of China(Grant Nos.BK20130585,BK2012058 and BK20140414)National High-Tech R&D Program of China(Grand No.SS2015AA012302)
文摘A new effect of transient mode competition in directly modulated DFB laser based on equivalent phase-shift (EPS) technique is presented and studied. Since there are multi-order reflections in EPS structure and if the 0th order subgrating is properly de- signed, the transient lasing of 0th order will occur during the rising time of the injection current. As a result, transient mode competition between -lst order (main mode) and 0th order will occur accordingly. This can consume redundant carrier and suppress the transient relaxation oscillation, which may be applied in some areas like on-off switching modulation of DFB semiconductor lasers. As an example, an equivalent n phase shift (n-EPS) is carefully designed to realize the effect. In such a laser the 0th order wavelength is in the margin of the material gain region and the -1st order wavelength is around the gain peak, while the stable single longitudinal mode (SLM) operation of the -lst order is guaranteed. The simulation investigation is performed. Good results with suppressed relaxation oscillation and 1.25 Gb/s directly on-off modulation (32 dB extinction ratio) are demonstrated. We believe it provides a new kind of method for on-off switching with high extinction ratio and weak relaxation oscillation.
基金the National Natural Science Foundation of China(Grant No.20171031)Provincial Natural Foundation of Shanxi.
文摘The interaction of several anti-tumor metal complexes with dGMP have been investigated using trans-[en_(2)Os(h^(2)-H_(2))]^(2+)as a ^(1)H NMR probe in a competitive mode.Me_(2)SnCl_(2),Bu_(2)SnCl_(2),Et_(2)Sn(phen)Cl_(2) and Et_(2)SnCl_(2) can bind to dGMP mainly via phosphate;Cp_(2)TiCl_(2) binds to dGMP mainly via phosphate and N_(7).The binding constant for(CH_(3))_(2)SnCl_(2) binding to phos-phate of dGMP exceeds 2.71×10^(4).The binding constant for Cp_(2)TiCl_(2) to phosphate is even greater than that of Sn(IV).Cis-platin has high affinity for both N_(7) and phosphate,but mainly for N_(7).Binding of the probe to N_(7) of dGMP reduces the binding affinity for phosphate of the same dGMP molecule by a factor of 5 to 6.Much the same factor is expected to apply to other metals containing agents interacting with dGMP.