Using the concept of the base forces, a new finite element method (base force element method, BFEM) based on the complementary energy principle is presented for accurate modeling of structures with large displacemen...Using the concept of the base forces, a new finite element method (base force element method, BFEM) based on the complementary energy principle is presented for accurate modeling of structures with large displacements and large rotations. First, the complementary energy of an element is described by taking the base forces as state variables, and is then separated into deformation and rotation parts for the case of large deformation. Second, the control equations of the BFEM based on the complementary energy principle are derived using the Lagrange multiplier method. Nonlinear procedure of the BFEM is then developed. Finally, several examples are analyzed to illustrate the reliability and accuracy of the BFEM.展开更多
Using the concept of base forces as state variables,a new finite element method-the base force element method (BFEM) on complementary energy principle for linear elasticity problems is presented.Firstly,an explicit ex...Using the concept of base forces as state variables,a new finite element method-the base force element method (BFEM) on complementary energy principle for linear elasticity problems is presented.Firstly,an explicit expression of compliance matrix for an element is derived through base forces by dyadic vectors.Then,the explicit control equations of finite element method of complementary energy principle are derived using Lagrange multiplier method.Thereafter,the base forces element procedure for linear elasticity is developed.Finally,several examples are analyzed to illustrate the reliability and accuracy of the formulation and the procedure.展开更多
Based on the variational equation of the nonlinear bending theory of doubledeck reticulated shallow shells, equations of large deflection and boundary conditions for a double-deck reticulated circular shallow spherica...Based on the variational equation of the nonlinear bending theory of doubledeck reticulated shallow shells, equations of large deflection and boundary conditions for a double-deck reticulated circular shallow spherical shell under a uniformly distributed pressure are derived by using coordinate transformation means and the principle of stationary complementary energy. The characteristic relationship and critical buckling pressure for the shell with two types of boundary conditions are obtained by taking the modified iteration method. Effects of geometrical parameters on the buckling behavior are also discussed.展开更多
A series of problems in mechanics and physics are governed by the ordinary Poisson equation which demands linearity,isotropy,and material homo- geneity.In this paper a generalization with respect to nonlinearity,aniso...A series of problems in mechanics and physics are governed by the ordinary Poisson equation which demands linearity,isotropy,and material homo- geneity.In this paper a generalization with respect to nonlinearity,anisotropy,and inhomogeneity is made.Starting from the canonical basic equations in the primal and dual formulation respectively we derive systematically the corresponding generalized variational principles;under certain conditions they can be extended to so called complementary extremum principles allowing for global bounds.For simplicity a restriction to two dimensional problems is made,including twice-connected domains.展开更多
We first present, by using exclusivity principle, a brief proof of the complementarity principle: the sum of squared expectation values of dichotomic (5:1) mutually complementary observables can not be greater tha...We first present, by using exclusivity principle, a brief proof of the complementarity principle: the sum of squared expectation values of dichotomic (5:1) mutually complementary observables can not be greater than 1. Then we prove that the complementarity principle yields tight quantum bounds of violations of N-qubit Svetlichny's inequalities. This result not only demonstrates that exclusivity principle can give tight quantum bound for certain type of genuine multipartite correlations, but also illustrates the subtle relationship between quantum complementarity and quantum genuine multipartite correlations.展开更多
The sensitivity problem to mesh distortion and the low accuracy problem of the stress solutions are two inherent difficulties in the finite element method.By applying the fundamental analytical solutions (in global Ca...The sensitivity problem to mesh distortion and the low accuracy problem of the stress solutions are two inherent difficulties in the finite element method.By applying the fundamental analytical solutions (in global Cartesian coordinates) to the Airy stress function of the anisotropic materials,8-and 12-node plane quadrilateral hybrid stress-function (HS-F) elements are successfully developed based on the principle of the minimum complementary energy.Numerical results show that the present new elements exhibit much better and more robust performance in both displacement and stress solutions than those obtained from other models.They can still perform very well even when the element shapes degenerate into a triangle and a concave quadrangle.It is also demonstrated that the proposed construction procedure is an effective way for developing shape-free finite element models which can completely overcome the sensitivity problem to mesh distortion and can produce highly accurate stress solutions.展开更多
基金supported by the China Postdoctoral Science Foundation Funded Project (20080430038) the Funding Project for Academic Human Resources Development in Institutions of Higher Learning Under the Jurisdiction of Beijing Municipality (05004999200602)
文摘Using the concept of the base forces, a new finite element method (base force element method, BFEM) based on the complementary energy principle is presented for accurate modeling of structures with large displacements and large rotations. First, the complementary energy of an element is described by taking the base forces as state variables, and is then separated into deformation and rotation parts for the case of large deformation. Second, the control equations of the BFEM based on the complementary energy principle are derived using the Lagrange multiplier method. Nonlinear procedure of the BFEM is then developed. Finally, several examples are analyzed to illustrate the reliability and accuracy of the BFEM.
基金supported by the National Natural Science Foundation of China (Grant No. 10972015)
文摘Using the concept of base forces as state variables,a new finite element method-the base force element method (BFEM) on complementary energy principle for linear elasticity problems is presented.Firstly,an explicit expression of compliance matrix for an element is derived through base forces by dyadic vectors.Then,the explicit control equations of finite element method of complementary energy principle are derived using Lagrange multiplier method.Thereafter,the base forces element procedure for linear elasticity is developed.Finally,several examples are analyzed to illustrate the reliability and accuracy of the formulation and the procedure.
基金Project supported by the National Natural Science Foundation of China (No. 19972024)the Key Laboratory of Disaster Forecast and Control in Engineering, Ministry of Education of Chinathe Key Laboratory of Diagnosis of Fault in Engineering Structures of Guangdong Province of China
文摘Based on the variational equation of the nonlinear bending theory of doubledeck reticulated shallow shells, equations of large deflection and boundary conditions for a double-deck reticulated circular shallow spherical shell under a uniformly distributed pressure are derived by using coordinate transformation means and the principle of stationary complementary energy. The characteristic relationship and critical buckling pressure for the shell with two types of boundary conditions are obtained by taking the modified iteration method. Effects of geometrical parameters on the buckling behavior are also discussed.
文摘A series of problems in mechanics and physics are governed by the ordinary Poisson equation which demands linearity,isotropy,and material homo- geneity.In this paper a generalization with respect to nonlinearity,anisotropy,and inhomogeneity is made.Starting from the canonical basic equations in the primal and dual formulation respectively we derive systematically the corresponding generalized variational principles;under certain conditions they can be extended to so called complementary extremum principles allowing for global bounds.For simplicity a restriction to two dimensional problems is made,including twice-connected domains.
文摘We first present, by using exclusivity principle, a brief proof of the complementarity principle: the sum of squared expectation values of dichotomic (5:1) mutually complementary observables can not be greater than 1. Then we prove that the complementarity principle yields tight quantum bounds of violations of N-qubit Svetlichny's inequalities. This result not only demonstrates that exclusivity principle can give tight quantum bound for certain type of genuine multipartite correlations, but also illustrates the subtle relationship between quantum complementarity and quantum genuine multipartite correlations.
基金supported by the National Natural Science Foundation of China(Grant No.10872108,10876100)the Program for New Century Excellent Talents in University(Grant No. NCET-07-0477)+1 种基金the National Basic Research Program of China(Grant No. 2010CB832701)ASFC
文摘The sensitivity problem to mesh distortion and the low accuracy problem of the stress solutions are two inherent difficulties in the finite element method.By applying the fundamental analytical solutions (in global Cartesian coordinates) to the Airy stress function of the anisotropic materials,8-and 12-node plane quadrilateral hybrid stress-function (HS-F) elements are successfully developed based on the principle of the minimum complementary energy.Numerical results show that the present new elements exhibit much better and more robust performance in both displacement and stress solutions than those obtained from other models.They can still perform very well even when the element shapes degenerate into a triangle and a concave quadrangle.It is also demonstrated that the proposed construction procedure is an effective way for developing shape-free finite element models which can completely overcome the sensitivity problem to mesh distortion and can produce highly accurate stress solutions.