To optimize peaking operation when high proportion new energy accesses to power grid,evaluation indexes are proposed which simultaneously consider wind-solar complementation and source-load coupling.A typical wind-sol...To optimize peaking operation when high proportion new energy accesses to power grid,evaluation indexes are proposed which simultaneously consider wind-solar complementation and source-load coupling.A typical wind-solar power output scene model based on peaking demand is established which has anti-peaking characteristic.This model uses balancing scenes and key scenes with probability distribution based on improved Latin hypercube sampling(LHS)algorithm and scene reduction technology to illustrate the influence of wind-solar on peaking demand.Based on this,a peak shaving operation optimization model of high proportion new energy power generation is established.The various operating indexes after optimization in multi-scene peaking are calculated,and the ability of power grid peaking operation is compared whth that considering wind-solar complementation and source-load coupling.Finally,a case of high proportion new energy verifies the feasibility and validity of the proposed operation strategy.展开更多
1Introduction Hydropower generation in China started over a century ago, greatly contributing to their economic and social development. Wind power and photovoltaic (PV) power generation began on a large scale in the 2...1Introduction Hydropower generation in China started over a century ago, greatly contributing to their economic and social development. Wind power and photovoltaic (PV) power generation began on a large scale in the 21st century.展开更多
Microglia are the main non-neuronal cells in the central nervous system that have important roles in brain development and functional connectivity of neural circuits.In brain physiology,highly dynamic microglial proce...Microglia are the main non-neuronal cells in the central nervous system that have important roles in brain development and functional connectivity of neural circuits.In brain physiology,highly dynamic microglial processes are facilitated to sense the surrounding environment and stimuli.Once the brain switches its functional states,microglia are recruited to specific sites to exert their immune functions,including the release of cytokines and phagocytosis of cellular debris.The crosstalk of microglia between neurons,neural stem cells,endothelial cells,oligodendrocytes,and astrocytes contributes to their functions in synapse pruning,neurogenesis,vascularization,myelination,and blood-brain barrier permeability.In this review,we highlight the neuron-derived“find-me,”“eat-me,”and“don't eat-me”molecular signals that drive microglia in response to changes in neuronal activity for synapse refinement during brain development.This review reveals the molecular mechanism of neuron-microglia interaction in synaptic pruning and presents novel ideas for the synaptic pruning of microglia in disease,thereby providing important clues for discovery of target drugs and development of nervous system disease treatment methods targeting synaptic dysfunction.展开更多
Background Several studies have evaluated the association between polymorphisms of encoding excision repair cross complementation group 1 (ERCC1) enzyme and lung cancer risk in diverse populations but with conflicti...Background Several studies have evaluated the association between polymorphisms of encoding excision repair cross complementation group 1 (ERCC1) enzyme and lung cancer risk in diverse populations but with conflicting results.By pooling the relatively small samples in each study, it is possible to perform a meta-analysis of the evidence by rigorous methods.Methods Embase, Ovid, Medline and Chinese National Knowledge Infrastructure were searched. Additional studies were identified from references in original studies or review articles. Articles meeting the inclusion criteria were reviewed systematically, and the reported data were aggregated using the statistical techniques of meta-analysis.Results We found 3810 cases with lung cancer and 4332 controls from seven eligible studies. T19007C polymorphism showed no significant effect on lung cancer risk (C allele vs. T allele: odds ratio (OR)=0.91, 95% confidence interval (CI)=0.80-1.04; CC vs. TT: OR=0.76, 95% CI=0.56-1.02; CC vs. (CT+TT): OR=0.96, 95% CI=-0.84-1.10). Similarly,there was no significant main effects for T19007C polymorphism on lung cancer risk when stratified analyses by ethnicity (Chinese or Caucasian). No significant association was found between C8092A polymorphism (3060 patients and 2729 controls) and the risk of lung cancer (A allele vs. C allele: OR=1.03, 95% CI=0.95-1.11; AA vs. CC: OR=1.08, 95% CI=-0.88-1.33; AA vs. (AC+CC): OR=1.08, 95% CI=-0.88-1.31).Conclusion We found little evidence of an association between the T1900C or C8092A polymorphisms of ERCC 1 and the risk of lung cancer in Caucasian or Han Chinese people.展开更多
Mammalian and plant Rabl and Rab2 are small GTPases that regulate vesicle trafficking in the endoplasmic reticulum (ER) to Golgi compartments. Little is known about their functional diversification or potential inte...Mammalian and plant Rabl and Rab2 are small GTPases that regulate vesicle trafficking in the endoplasmic reticulum (ER) to Golgi compartments. Little is known about their functional diversification or potential interaction. We cloned sugarcane (Saccharum officinarum L.) Rab1A and Rab2A genes and studied their functional differences by expression and complementation experiments. We found differential expression of the two genes during sugarcane leaf development: SoRab2A expression declined from the dividing base to the maturing tip of the growing leaves, whereas SoRab1A was constitutively expressed, suggesting that SoRab2A is required for cell division and expansion and SoRablA is required for cells at all developmental stages. We used a yeast temperature sensitive ypt1-A 136D mutant strain to further investigate these shared and unique functions. Yptl is a small GTPase that regulates vesicle transport in the same cellular location as Rabl and Rab2. Neither SoRab1A nor SoRab2A alone could restore the growth of the mutant at restrictive temperatures when SoRab1A and SoRab2A were transformed separately. However, SoRab1A transformants maintained normal morphology and viability at non-permissive temperature, and resumed growth when returned to permissive temperature, whereas SoRab2A transformants died at non-permissive temperature, suggesting that SoRablA function is required for a cell's viability. Mutant growth was fully restored when SoRab1A and SoRab2A were co-transformed, indicating that SoRablA and SoRab2A complement each other and they both are needed to restore the function of ypt1-A136D. These results demonstrate that SoRab1A and SoRab2A serve distinct but overlapping functions, mostly by regulating the transportation of different sets of proteins.展开更多
Omsk hemorrhagic fever virus(OHFV) is a tick-borne flavivirus classified as a biosafety level-4(BSL4) pathogen. Studies of OHFV are restricted to be conducted within BSL4 laboratories. Currently, no commercial vaccine...Omsk hemorrhagic fever virus(OHFV) is a tick-borne flavivirus classified as a biosafety level-4(BSL4) pathogen. Studies of OHFV are restricted to be conducted within BSL4 laboratories. Currently, no commercial vaccines or antiviral drugs are available against OHFV infection. In this study, we recovered a replication-deficient OHFV with an NS1 deletion(OHFVDNS1) and reporter virus replacing NS1 with the Gaussia luciferase(Gluc)(OHFV-ΔNS1-Gluc). Both the defective OHFVDNS1 and OHFV-ΔNS1-Gluc virus could only replicate efficiently in the BHK21 cell line expressing NS1(BHK21NS1) but not in na?ve BHK21 cells. The Gluc reporter gene of OHFV-ΔNS1-Gluc virus was maintained stably after serial passaging of BHK21NS1 cells and was used to surrogate the replication of OHFV. Using NITD008, OHFV-ΔNS1-Gluc virus was validated for antiviral screening, and high-throughput screening parameters were optimized in a 96-well plate format with a calculated Z0 value above 0.5. The OHFV-ΔNS1-Gluc reporter virus is a powerful tool for antiviral screening as well as viral replication and pathogenesis studies in BSL2 laboratories.展开更多
Farnesyl dlphosphate synthase (FPS; EC 2.5.1.10) catalyzes the production of 15-carbon farnesyl dlphosphate which Is a branch-point Intermediate for many terpenoids. This reaction Is considered to be a ratelimiting ...Farnesyl dlphosphate synthase (FPS; EC 2.5.1.10) catalyzes the production of 15-carbon farnesyl dlphosphate which Is a branch-point Intermediate for many terpenoids. This reaction Is considered to be a ratelimiting step In terpenold biosynthesis. Here we report for the first time the cloning of a new full-length cDNA encoding farnesyl dlphosphate synthase from a gymnosperm plant species, Taxus media Rehder, designated as TmFPS1. The full-length cDNA of TmFPS1 (GenBank accession number: AY461811) was 1 464 bp with a 1 056-bp open reading frame encoding a 351-amino acid polypeptlde with a calculated molecular weight of 40.3 kDa and a theoretical pl of 5.07. Biolnformatlc analysis revealed that TmFPS1 contained all five conserved domains of prenyltransferases, and showed homology to other FPSs of plant origin. Phylogenetlc analysis showed that farnesyl dlphosphate synthases can be divided Into two groups: one of prokaryotic origin and the other of eukaryotic origin. TmFPS1 was grouped with FPSs of plant origin. Homologybased structural modeling showed that TmFPS1 had the typical spatial structure of FPS, whose most prominent structural feature Is the arrangement of 13 core helices around a large central cavity In which the catalytic reaction takes place. Our blolnformatic analysis strongly suggests that TmFPS1 is a functional gene. Southern blot analysis revealed that TmFPS1 belongs to a small FPSgene family in T. media. Northern blot analysis indicated that TmFPS1 is expressed in all tested tissues, Including the needles, stems and roots of T. media. Subsequently, functional complementatlon with TmFPS1 in a FPS-deflclent mutant yeast demonstrated that TmFPS1 did encode farnesyl dlphosphate synthase, which rescued the yeast mutant. This study will be helpful In future Investigations aiming at understanding the detailed role of FPS In terpenold biosynthesis flux control at the molecular genetic level.展开更多
Interspecies chimera through blastocyst complementation could be an alternative approach to create human organs in animals by using human pluripotent stem cells.A mismatch of the major histocompatibility complex of va...Interspecies chimera through blastocyst complementation could be an alternative approach to create human organs in animals by using human pluripotent stem cells.A mismatch of the major histocompatibility complex of vascular endothelial cells between the human and host animal will cause graft rejection in the transplanted organs.Therefore,to achieve a transplantable organ in animals without rejection,creation of vascular endothelial cells derived from humans within the organ is necessary.In this study,to explore whether donor xeno-pluripotent stem cells can compensate for blood vasculature in host animals,we generated rat-mouse chimeras by injection of rat embryonic stem cells(rESCs)into mouse blastocysts with deficiency of Flk-1 protein,which is associated with endothelial and hematopoietic cell development.We found that rESCs could differentiate into vascular endothelial and hematopoietic cells in the rat-mouse chimeras.The whole yolk sac(YS)of Flk-1^EGFP/ECFP rat-mouse chimera was full of rat blood vasculature.Rat genes related to vascular endothelial cells,arteries,and veins,blood vessels formation process,as well as hematopoietic cells,were highly expressed in the YS.Our results suggested that rat vascular endothelial cells could undergo proliferation,migration,and self-assembly to form blood vasculature and that hematopoietic cells could differentiate into B cells,T cells,and myeloid cells in rat-mouse chimeras,which was able to rescue early embryonic lethality caused by Flk-1 deficiency in mouse.展开更多
One major strategy to generate genetically modified mouse models is gene targeting in mouse embryonic stem(ES)cells,which is used to produce gene-targeted mice for wide applications in biomedicine.However,a major bott...One major strategy to generate genetically modified mouse models is gene targeting in mouse embryonic stem(ES)cells,which is used to produce gene-targeted mice for wide applications in biomedicine.However,a major bottleneck in this approach is that the robustness of germiine transmission of gene-targeted ES cells can be significantly reduced by their genetic and epigenetic instability after long-term culturing,which impairs the efficiency and robustness of mouse model generation.Recently,we have established a new type of pluripotent cells termed extended pluripotent stem(EPS)cells,which have superior developmental potency and robust germline competence compared to conventional mouse ES cells.In this study,we demonstrate that mouse EPS cells well maintain developmental potency and genetic stability after long-term passage.Based on gene targeting in mouse EPS cells,we established a new approach to directly and rapidly generate gene-targeted mouse models through tetraploid complementation,Haibo Li and Chaoran Zhao contributed equally to this work.Electronic supplementary material The online version of this article(https://doi.org/10.1007/s13238-018-0556-1)contains supplementary material,which is available to authorized users.which could be accomplished in approximately 2 months.Importantly,using this approach,we successfully constructed mouse models in which the human interleukin 3(IL3)or interleukin 6(IL6)gene was knocked into its corresponding locus in the mouse genome.Our study demonstrates the feasibility of using mouse EPS cells to rapidly generate mouse models by gene targeting,which have great application potential in biomedical research.展开更多
In order to study the feasibility of Cucumber mosaic virus (CMV) as an expression vector, the full-length cDNA of RNA 3 from strain SD was cloned and the sequence around the start codon of the coat protein (CP) gene w...In order to study the feasibility of Cucumber mosaic virus (CMV) as an expression vector, the full-length cDNA of RNA 3 from strain SD was cloned and the sequence around the start codon of the coat protein (CP) gene was modified to create an Nsi I site for insertion of foreign genes. The CP gene was replaced by the green fluorescent protein (GFP) gene. The cDNAs of Fny RNAs 1 and 2 and the chimeric SD RNA 3 were cloned between the modified 35S promoter and terminator. Tobacco protoplasts were transfected with a mixture of the viral cDNAs containing 35S promoter and terminator as a replacement vector and expressed GFP. A complementation system was established when the replacement vector was inoculated onto the transgenic tobacco plants expressing SD-CMV CP. GFP was detected in the inoculated leaves in 5 of 18 tested plants and in the first upper systemic leaf of one of the 5 plants ten days after inoculation. However, no GFP could be detected in all the plants one month after inoculation. Recombination between the CMV vector and the CP transgene was proved by retro-transcriptional polymerase chain reaction (RT-PCR) and verified by DNA sequencing. Our results argue against the feasibility of the CMV-based replacement vector trans-complemented by the CP transgene, and at the same time, enlighten ways to improve the CMV-based expression vector and the biosafety of CMV CP-mediated virus resistant transgenic plants.展开更多
Spinal cord injury remains a major cause of disability in young adults,and beyond acute decompression and rehabilitation,there are no pharmacological treatments to limit the progression of injury and optimize recovery...Spinal cord injury remains a major cause of disability in young adults,and beyond acute decompression and rehabilitation,there are no pharmacological treatments to limit the progression of injury and optimize recovery in this population.Following the thorough investigation of the complement system in triggering and propagating cerebral neuroinflammation,a similar role for complement in spinal neuroinflammation is a focus of ongoing research.In this work,we survey the current literature investigating the role of complement in spinal cord injury including the sources of complement proteins,triggers of complement activation,and role of effector functions in the pathology.We study relevant data demonstrating the different triggers of complement activation after spinal cord injury including direct binding to cellular debris,and or activation via antibody binding to damage-associated molecular patterns.Several effector functions of complement have been implicated in spinal cord injury,and we critically evaluate recent studies on the dual role of complement anaphylatoxins in spinal cord injury while emphasizing the lack of pathophysiological understanding of the role of opsonins in spinal cord injury.Following this pathophysiological review,we systematically review the different translational approaches used in preclinical models of spinal cord injury and discuss the challenges for future translation into human subjects.This review emphasizes the need for future studies to dissect the roles of different complement pathways in the pathology of spinal cord injury,to evaluate the phases of involvement of opsonins and anaphylatoxins,and to study the role of complement in white matter degeneration and regeneration using translational strategies to supplement genetic models.展开更多
H7N9 subtype avian influenza virus poses a great challenge for poultry industry.Newcastle disease virus(NDV)-vectored H7N9 avian influenza vaccines(NDV_(vec)H7N9)are effective in disease control because they are prote...H7N9 subtype avian influenza virus poses a great challenge for poultry industry.Newcastle disease virus(NDV)-vectored H7N9 avian influenza vaccines(NDV_(vec)H7N9)are effective in disease control because they are protective and allow mass administration.Of note,these vaccines elicit undetectable H7N9-specific hemagglutination-inhibition(HI)but high IgG antibodies in chickens.However,the molecular basis and protective mechanism underlying this particular antibody immunity remain unclear.Herein,immunization with an NDV_(vec)H7N9 induced low anti-H7N9 HI and virus neutralization titers but high levels of hemagglutinin(HA)-binding IgG antibodies in chickens.Three residues(S150,G151 and S152)in HA of H7N9 virus were identified as the dominant epitopes recognized by the NDV_(vec)H7N9 immune serum.Passively transferred NDV_(vec)H7N9 immune serum conferred complete protection against H7N9 virus infection in chickens.The NDV_(vec)H7N9 immune serum can mediate a potent lysis of HA-expressing and H7N9 virus-infected cells and significantly suppress H7N9 virus infectivity.These activities of the serum were significantly impaired after heat-inactivation or treatment with complement inhibitor,suggesting the engagement of the complement system.Moreover,mutations in the 150-SGS-152 sites in HA resulted in significant reductions in cell lysis and virus neutralization mediated by the NDV_(vec)H7N9 immune serum,indicating the requirement of antibody-antigen binding for complement activity.Therefore,antibodies induced by the NDV_(vec)H7N9 can activate antibody-dependent complement-mediated lysis of H7N9 virus-infected cells and complement-mediated neutralization of H7N9 virus.Our findings unveiled a novel role of the complement in protection conferred by the NDV_(vec)H7N9,highlighting a potential benefit of engaging the complement system in H7N9 vaccine design.展开更多
Repetitive traumatic brain injury impacts adult neurogenesis in the hippocampal dentate gyrus,leading to long-term cognitive impairment.However,the mechanism underlying this neurogenesis impairment remains unknown.In ...Repetitive traumatic brain injury impacts adult neurogenesis in the hippocampal dentate gyrus,leading to long-term cognitive impairment.However,the mechanism underlying this neurogenesis impairment remains unknown.In this study,we established a male mouse model of repetitive traumatic brain injury and performed long-term evaluation of neurogenesis of the hippocampal dentate gyrus after repetitive traumatic brain injury.Our results showed that repetitive traumatic brain injury inhibited neural stem cell proliferation and development,delayed neuronal maturation,and reduced the complexity of neuronal dendrites and spines.Mice with repetitive traumatic brain injuryalso showed deficits in spatial memory retrieval.Moreover,following repetitive traumatic brain injury,neuroinflammation was enhanced in the neurogenesis microenvironment where C1q levels were increased,C1q binding protein levels were decreased,and canonical Wnt/β-catenin signaling was downregulated.An inhibitor of C1 reversed the long-term impairment of neurogenesis induced by repetitive traumatic brain injury and improved neurological function.These findings suggest that repetitive traumatic brain injury–induced C1-related inflammation impairs long-term neurogenesis in the dentate gyrus and contributes to spatial memory retrieval dysfunction.展开更多
Diabetic cardiomyopathy is a disorder of the cardiac muscle that affects patients with diabetes.The exact mechanisms underlying diabetic cardiomyopathy are mostly unknown,but several factors have been implicated in th...Diabetic cardiomyopathy is a disorder of the cardiac muscle that affects patients with diabetes.The exact mechanisms underlying diabetic cardiomyopathy are mostly unknown,but several factors have been implicated in the pathogenesis of the disease and its progression towards heart failure,including endothelial dysfunction,autonomic neuropathy,metabolic alterations,oxidative stress,and alterations in ion homeostasis,especially calcium transients[1].In Military Medical Research,Jiang et al.[2]sought to determine the functional role of complement factor D(Adipsin)in the pathophysiology of diabetic cardiomyopathy.展开更多
BACKGROUND Complement activation is recognized as an important factor in the progression of liver damage caused by acetaminophen(APAP).However,the role of the complement inhibitor C2-FH in APAP-induced liver injury re...BACKGROUND Complement activation is recognized as an important factor in the progression of liver damage caused by acetaminophen(APAP).However,the role of the complement inhibitor C2-FH in APAP-induced liver injury remains unclear.AIM To explore C2-FH in protecting against APAP-induced liver injury by inhibiting complement activation.METHODS A model of APAP-induced liver injury was used to study the protective effect of C2-FH on liver injury.C2-FH was administered through intraperitoneal injection 30 minutes after APAP treatment.We detected the effects of C2-FH on liver function,inflammatory response and complement activation.Additionally,RNA-sequencing(RNA-Seq)analysis was conducted to understand the mechanism through which C2-FH provides protection against APAP-induced liver injury.RESULTS C2-FH inhibited the increase in serum alanine aminotransferase activity,aspartate aminotransferase activity and lactate dehydrogenase,and reduced liver tissue necrosis caused by APAP.Moreover,it attenuated the inflammatory response and inhibited complement activation in APAP-induced liver injury.RNA-Seq analysis provided additional explanations for the protective role of C2-FH against APAP-induced liver injury.CONCLUSION C2-FH attenuates APAP-induced liver injury by inhibiting complement activation.展开更多
BACKGROUND Complement components could contribute to the tumor microenvironment and the systemic immune response.Nevertheless,their role in colorectal cancer(CRC)remains a contentious subject.AIM To elucidate the rela...BACKGROUND Complement components could contribute to the tumor microenvironment and the systemic immune response.Nevertheless,their role in colorectal cancer(CRC)remains a contentious subject.AIM To elucidate the relationship between complement components and CRC risk and clinical characteristics.METHODS Searches were conducted in PubMed,the Cochrane Library,and the China National Knowledge Infrastructure database until June 1,2023.We included cohort studies encompassing participants aged≥18 years,investigating the association between complement components and CRC.The studies were of moderate quality or above,as determined by the Agency for Healthcare Research and Quality.The meta-analysis employed fixed-effects or random-effects models based on the I^(2)test,utilizing risk ratio(RR)and their corresponding 95%confidence interval(CI)for outcomes.Sensitivity and subgroup analyses were performed to validate the robustness of the collective estimates and identify the source of heterogeneity.RESULTS Data from 15 studies,comprising 1631 participants that met the inclusion criteria,were included in the meta-analysis.Our findings indicated that protein levels of cluster of differentiation 46(CD46)(RR=3.66,95%CI:1.75-7.64,P<0.001),CD59(RR=2.86,95%CI:1.36-6.01,P=0.005),and component 1(C1)(RR=5.88,95%CI:1.75-19.73,P=0.004)and serum levels of C3(standardized mean difference=1.82,95%CI:0.06-3.58,P=0.040)were significantly elevated in patients with CRC compared to healthy controls.Strong expression of CD55 or CD59 was associated with a higher incidence of lymph node metastasis,whereas strong CD46 expression correlated with a higher incidence of tumor differentiation compared to low CD46 expression(P<0.05 for all).Although specific pooled results demonstrated notable heterogeneity,subgroup analyses pointed to regional differences as the primary source of inconsistency among the studies.CONCLUSION Our analysis underscores that increased levels of specific complement components are associated with a heightened risk of CRC,emphasizing the potential significance of monitoring elevated complement component levels.展开更多
In this editorial,we review the work of Razali et al published in World J Gas-troenterology,with a particular focus on the effect of rs10889677 variation in the phosphatidylinositol 3-kinase(PI3K)pathway and buparlisi...In this editorial,we review the work of Razali et al published in World J Gas-troenterology,with a particular focus on the effect of rs10889677 variation in the phosphatidylinositol 3-kinase(PI3K)pathway and buparlisib on colitis-associated cancer.The role of PI3K in promoting cancer progression has been widely recognized,as it is involved in regulating the survival,differentiation,and prolif-eration of cancer cells.The complement Clq/TNF-related protein 6(CTRP6)is a newer tumor-associated factor.Recent studies have revealed the pro-tumor effect of CTRP6 in gastric cancer,hepatocellular carcinoma,colorectal cancer,and other gastrointestinal tumors through the PI3K pathway.This article attempts to reveal the mechanism through which the CTRP6 affects the development of digestive system tumors through the PI3K pathway by summarizing recent research.展开更多
BACKGROUND Colon cancer(CC)occurrence and progression are considerably influenced by the tumor microenvironment.However,the exact underlying regulatory mechanisms remain unclear.AIM To investigate immune infiltration-...BACKGROUND Colon cancer(CC)occurrence and progression are considerably influenced by the tumor microenvironment.However,the exact underlying regulatory mechanisms remain unclear.AIM To investigate immune infiltration-related differentially expressed genes(DEGs)in CC and specifically explored the role and potential molecular mechanisms of complement factor I(CFI).METHODS Immune infiltration-associated DEGs were screened for CC using bioinformatics.Quantitative reverse transcription polymerase chain reaction was used to examine hub DEGs expression in the CC cell lines.Stable CFI-knockdown HT29 and HCT116 cell lines were constructed,and the diverse roles of CFI in vitro were assessed using CCK-8,5-ethynyl-2’-deoxyuridine,wound healing,and transwell assays.Hematoxylin and eosin staining and immunohistochemistry staining were employed to evaluate the influence of CFI on the tumorigenesis of CC xenograft models constructed using BALB/c male nude mice.Key proteins associated with glycolysis and the Wnt pathway were measured using western blotting.RESULTS Six key immune infiltration-related DEGs were screened,among which the expression of CFI,complement factor B,lymphoid enhancer binding factor 1,and SRY-related high-mobility-group box 4 was upregulated,whereas that of fatty acid-binding protein 1,and bone morphogenic protein-2 was downregulated.Furthermore,CFI could be used as a diagnostic biomarker for CC.Functionally,CFI silencing inhibited CC cell proliferation,migration,invasion,and tumor growth.Mechanistically,CFI knockdown downregulated the expression of key glycolysis-related proteins(glucose transporter type 1,hexokinase 2,lactate dehydrogenase A,and pyruvate kinase M2)and the Wnt pathway-related proteins(β-catenin and c-Myc).Further investigation indicated that CFI knockdown inhibited glycolysis in CC by blocking the Wnt/β-catenin/c-Myc pathway.CONCLUSION The findings of the present study demonstrate that CFI plays a crucial role in CC development by influencing glycolysis and the Wnt/β-catenin/c-Myc pathway,indicating that it could serve as a promising target for therapeutic intervention in CC.展开更多
Recently,new findings have been clarified concerning both pathogenesis and treatment of IgA nephritis.The four hits theory has been confirmed but several genetic wide association studies have allowed finding several g...Recently,new findings have been clarified concerning both pathogenesis and treatment of IgA nephritis.The four hits theory has been confirmed but several genetic wide association studies have allowed finding several genes connected with the pathogenesis of the disease.All these new genes apply to each of the four hits.Additionally,new discoveries concerning the microbiota and its connection with immune system and IgA generation have allowed finding out the role of the mucosa in IgA nephropathy pathogenesis.The IgA treatment is also changed included the future possibilities.The treatment of the chronic kidney disease,associated with the nephropathy,is mandatory,since the beginning of the disease.The classical immunosuppressive agents have poor effect.The corticosteroids remain an important cornerstone in any phase of the disease.More effect is related to the treatment of B cells and plasma cells.In particular,in very recent studies have been documented the efficacy of anti B cell-activating factor and anti A proliferation-inducing ligand agents.Most of these studies are to date in phase II/III.Finally,new agents targeting complement are arising.These agents also are still in randomized trials and act principally in hit 4 where the immunocomplexes in the mesangium activate the different pathways of the complement cascade.展开更多
The accessory proteins(3a, 3b, 6, 7a, 7b, 8a, 8b, 9b and ORF14), predicted unknown proteins(PUPs) encoded by the genes, are considered to be unique to the severe acute respiratory syndrome coronavirus(SARS-Co V) genom...The accessory proteins(3a, 3b, 6, 7a, 7b, 8a, 8b, 9b and ORF14), predicted unknown proteins(PUPs) encoded by the genes, are considered to be unique to the severe acute respiratory syndrome coronavirus(SARS-Co V) genome. These proteins play important roles in various biological processes mediated by interactions with their partners. However, very little is known about the interactions among these accessory proteins. Here, a EYFP(enhanced yellow fluorescent protein) bimolecular fluorescence complementation(BiFC) assay was used to detect the interactions among accessory proteins. 33 out of 81 interactions were identified by BiFC, much more than that identified by the yeast two-hybrid(Y2H)system. This is the first report describing direct visualization of interactions among accessory proteins of SARS-CoV. These findings attest to the general applicability of the BiFC system for the verification of protein-protein interactions.展开更多
基金Youth Science and Technology Fund Project of Gansu Province(No.18JR3RA011)Major Projects in Gansu Province(No.17ZD2GA010)+1 种基金Science and Technology Projects Funding of State Grid Corporation(No.522727160001)Science and Technology Projects of State Grid Gansu Electric Power Company(No.52272716000K)
文摘To optimize peaking operation when high proportion new energy accesses to power grid,evaluation indexes are proposed which simultaneously consider wind-solar complementation and source-load coupling.A typical wind-solar power output scene model based on peaking demand is established which has anti-peaking characteristic.This model uses balancing scenes and key scenes with probability distribution based on improved Latin hypercube sampling(LHS)algorithm and scene reduction technology to illustrate the influence of wind-solar on peaking demand.Based on this,a peak shaving operation optimization model of high proportion new energy power generation is established.The various operating indexes after optimization in multi-scene peaking are calculated,and the ability of power grid peaking operation is compared whth that considering wind-solar complementation and source-load coupling.Finally,a case of high proportion new energy verifies the feasibility and validity of the proposed operation strategy.
文摘1Introduction Hydropower generation in China started over a century ago, greatly contributing to their economic and social development. Wind power and photovoltaic (PV) power generation began on a large scale in the 21st century.
基金supported by the National Natural Science Foundation of ChinaNo.32200778(to QC)+5 种基金the Natural Science Foundation of Jiangsu ProvinceNo.BK20220494(to QC)Suzhou Medical and Health Technology Innovation ProjectNo.SKY2022107(to QC)a grant from the Clinical Research Center of Neurological Disease in The Second Affiliated Hospital of Soochow UniversityNos.ND2022A04(to QC)and ND2023B06(to JS)。
文摘Microglia are the main non-neuronal cells in the central nervous system that have important roles in brain development and functional connectivity of neural circuits.In brain physiology,highly dynamic microglial processes are facilitated to sense the surrounding environment and stimuli.Once the brain switches its functional states,microglia are recruited to specific sites to exert their immune functions,including the release of cytokines and phagocytosis of cellular debris.The crosstalk of microglia between neurons,neural stem cells,endothelial cells,oligodendrocytes,and astrocytes contributes to their functions in synapse pruning,neurogenesis,vascularization,myelination,and blood-brain barrier permeability.In this review,we highlight the neuron-derived“find-me,”“eat-me,”and“don't eat-me”molecular signals that drive microglia in response to changes in neuronal activity for synapse refinement during brain development.This review reveals the molecular mechanism of neuron-microglia interaction in synaptic pruning and presents novel ideas for the synaptic pruning of microglia in disease,thereby providing important clues for discovery of target drugs and development of nervous system disease treatment methods targeting synaptic dysfunction.
文摘Background Several studies have evaluated the association between polymorphisms of encoding excision repair cross complementation group 1 (ERCC1) enzyme and lung cancer risk in diverse populations but with conflicting results.By pooling the relatively small samples in each study, it is possible to perform a meta-analysis of the evidence by rigorous methods.Methods Embase, Ovid, Medline and Chinese National Knowledge Infrastructure were searched. Additional studies were identified from references in original studies or review articles. Articles meeting the inclusion criteria were reviewed systematically, and the reported data were aggregated using the statistical techniques of meta-analysis.Results We found 3810 cases with lung cancer and 4332 controls from seven eligible studies. T19007C polymorphism showed no significant effect on lung cancer risk (C allele vs. T allele: odds ratio (OR)=0.91, 95% confidence interval (CI)=0.80-1.04; CC vs. TT: OR=0.76, 95% CI=0.56-1.02; CC vs. (CT+TT): OR=0.96, 95% CI=-0.84-1.10). Similarly,there was no significant main effects for T19007C polymorphism on lung cancer risk when stratified analyses by ethnicity (Chinese or Caucasian). No significant association was found between C8092A polymorphism (3060 patients and 2729 controls) and the risk of lung cancer (A allele vs. C allele: OR=1.03, 95% CI=0.95-1.11; AA vs. CC: OR=1.08, 95% CI=-0.88-1.33; AA vs. (AC+CC): OR=1.08, 95% CI=-0.88-1.31).Conclusion We found little evidence of an association between the T1900C or C8092A polymorphisms of ERCC 1 and the risk of lung cancer in Caucasian or Han Chinese people.
文摘Mammalian and plant Rabl and Rab2 are small GTPases that regulate vesicle trafficking in the endoplasmic reticulum (ER) to Golgi compartments. Little is known about their functional diversification or potential interaction. We cloned sugarcane (Saccharum officinarum L.) Rab1A and Rab2A genes and studied their functional differences by expression and complementation experiments. We found differential expression of the two genes during sugarcane leaf development: SoRab2A expression declined from the dividing base to the maturing tip of the growing leaves, whereas SoRab1A was constitutively expressed, suggesting that SoRab2A is required for cell division and expansion and SoRablA is required for cells at all developmental stages. We used a yeast temperature sensitive ypt1-A 136D mutant strain to further investigate these shared and unique functions. Yptl is a small GTPase that regulates vesicle transport in the same cellular location as Rabl and Rab2. Neither SoRab1A nor SoRab2A alone could restore the growth of the mutant at restrictive temperatures when SoRab1A and SoRab2A were transformed separately. However, SoRab1A transformants maintained normal morphology and viability at non-permissive temperature, and resumed growth when returned to permissive temperature, whereas SoRab2A transformants died at non-permissive temperature, suggesting that SoRablA function is required for a cell's viability. Mutant growth was fully restored when SoRab1A and SoRab2A were co-transformed, indicating that SoRablA and SoRab2A complement each other and they both are needed to restore the function of ypt1-A136D. These results demonstrate that SoRab1A and SoRab2A serve distinct but overlapping functions, mostly by regulating the transportation of different sets of proteins.
基金supported by National Science and Technology Major Project on Important Infectious Diseases Prevention and Control (2018ZX10734404-010)National Key Research and Development Program of China (2018YFA0507201)
文摘Omsk hemorrhagic fever virus(OHFV) is a tick-borne flavivirus classified as a biosafety level-4(BSL4) pathogen. Studies of OHFV are restricted to be conducted within BSL4 laboratories. Currently, no commercial vaccines or antiviral drugs are available against OHFV infection. In this study, we recovered a replication-deficient OHFV with an NS1 deletion(OHFVDNS1) and reporter virus replacing NS1 with the Gaussia luciferase(Gluc)(OHFV-ΔNS1-Gluc). Both the defective OHFVDNS1 and OHFV-ΔNS1-Gluc virus could only replicate efficiently in the BHK21 cell line expressing NS1(BHK21NS1) but not in na?ve BHK21 cells. The Gluc reporter gene of OHFV-ΔNS1-Gluc virus was maintained stably after serial passaging of BHK21NS1 cells and was used to surrogate the replication of OHFV. Using NITD008, OHFV-ΔNS1-Gluc virus was validated for antiviral screening, and high-throughput screening parameters were optimized in a 96-well plate format with a calculated Z0 value above 0.5. The OHFV-ΔNS1-Gluc reporter virus is a powerful tool for antiviral screening as well as viral replication and pathogenesis studies in BSL2 laboratories.
基金Supported by the Hi-Tech Research and Development(863) Program of China,and the National Natural Science Foundation of China(30500303)
文摘Farnesyl dlphosphate synthase (FPS; EC 2.5.1.10) catalyzes the production of 15-carbon farnesyl dlphosphate which Is a branch-point Intermediate for many terpenoids. This reaction Is considered to be a ratelimiting step In terpenold biosynthesis. Here we report for the first time the cloning of a new full-length cDNA encoding farnesyl dlphosphate synthase from a gymnosperm plant species, Taxus media Rehder, designated as TmFPS1. The full-length cDNA of TmFPS1 (GenBank accession number: AY461811) was 1 464 bp with a 1 056-bp open reading frame encoding a 351-amino acid polypeptlde with a calculated molecular weight of 40.3 kDa and a theoretical pl of 5.07. Biolnformatlc analysis revealed that TmFPS1 contained all five conserved domains of prenyltransferases, and showed homology to other FPSs of plant origin. Phylogenetlc analysis showed that farnesyl dlphosphate synthases can be divided Into two groups: one of prokaryotic origin and the other of eukaryotic origin. TmFPS1 was grouped with FPSs of plant origin. Homologybased structural modeling showed that TmFPS1 had the typical spatial structure of FPS, whose most prominent structural feature Is the arrangement of 13 core helices around a large central cavity In which the catalytic reaction takes place. Our blolnformatic analysis strongly suggests that TmFPS1 is a functional gene. Southern blot analysis revealed that TmFPS1 belongs to a small FPSgene family in T. media. Northern blot analysis indicated that TmFPS1 is expressed in all tested tissues, Including the needles, stems and roots of T. media. Subsequently, functional complementatlon with TmFPS1 in a FPS-deflclent mutant yeast demonstrated that TmFPS1 did encode farnesyl dlphosphate synthase, which rescued the yeast mutant. This study will be helpful In future Investigations aiming at understanding the detailed role of FPS In terpenold biosynthesis flux control at the molecular genetic level.
基金financially supported by the Strategic Priority Research Program of the Chinese Academy of Sciences(XDA16030503)National Key Research and Development Program of China(2017YFA0105103)+5 种基金Key Research&Development Program of Guangzhou Regenerative Medicine and Health Guangdong Laboratory(2018GZR110104004)Science and Technology Planning Project of Guangdong Province,China(2014A030312001,2017B020231001,2017A050501059,2017B030314056)Science and Technology Program of Guangzhou,China(201704030034)Research Unit of Generation of Large Animal Disease Models,Chinese Academy of Medical Sciences(2019-I2M-5-025)the Science and Technology Planning Project of Jiangmen(2017TD02)the Young People Fund of Wuyi University(2019TD05)。
文摘Interspecies chimera through blastocyst complementation could be an alternative approach to create human organs in animals by using human pluripotent stem cells.A mismatch of the major histocompatibility complex of vascular endothelial cells between the human and host animal will cause graft rejection in the transplanted organs.Therefore,to achieve a transplantable organ in animals without rejection,creation of vascular endothelial cells derived from humans within the organ is necessary.In this study,to explore whether donor xeno-pluripotent stem cells can compensate for blood vasculature in host animals,we generated rat-mouse chimeras by injection of rat embryonic stem cells(rESCs)into mouse blastocysts with deficiency of Flk-1 protein,which is associated with endothelial and hematopoietic cell development.We found that rESCs could differentiate into vascular endothelial and hematopoietic cells in the rat-mouse chimeras.The whole yolk sac(YS)of Flk-1^EGFP/ECFP rat-mouse chimera was full of rat blood vasculature.Rat genes related to vascular endothelial cells,arteries,and veins,blood vessels formation process,as well as hematopoietic cells,were highly expressed in the YS.Our results suggested that rat vascular endothelial cells could undergo proliferation,migration,and self-assembly to form blood vasculature and that hematopoietic cells could differentiate into B cells,T cells,and myeloid cells in rat-mouse chimeras,which was able to rescue early embryonic lethality caused by Flk-1 deficiency in mouse.
基金the National Key Research and Development Program of China(2016YFA01001002017YFA0103000)+4 种基金the National Natural Science Foundation of China(Grant Nos.31730059 and 31521004)the Guangdong Innovative and En trepreneurial Research Team Program(2014ZT05S216)the Science and Technology Planning Project of Guangdong Province,China(2014B020226001 and 2016B030232001)the Science and Technology Program of Guangzhou,China(201508020001)National Natural Science Foundation of China(Grant No.31571052).
文摘One major strategy to generate genetically modified mouse models is gene targeting in mouse embryonic stem(ES)cells,which is used to produce gene-targeted mice for wide applications in biomedicine.However,a major bottleneck in this approach is that the robustness of germiine transmission of gene-targeted ES cells can be significantly reduced by their genetic and epigenetic instability after long-term culturing,which impairs the efficiency and robustness of mouse model generation.Recently,we have established a new type of pluripotent cells termed extended pluripotent stem(EPS)cells,which have superior developmental potency and robust germline competence compared to conventional mouse ES cells.In this study,we demonstrate that mouse EPS cells well maintain developmental potency and genetic stability after long-term passage.Based on gene targeting in mouse EPS cells,we established a new approach to directly and rapidly generate gene-targeted mouse models through tetraploid complementation,Haibo Li and Chaoran Zhao contributed equally to this work.Electronic supplementary material The online version of this article(https://doi.org/10.1007/s13238-018-0556-1)contains supplementary material,which is available to authorized users.which could be accomplished in approximately 2 months.Importantly,using this approach,we successfully constructed mouse models in which the human interleukin 3(IL3)or interleukin 6(IL6)gene was knocked into its corresponding locus in the mouse genome.Our study demonstrates the feasibility of using mouse EPS cells to rapidly generate mouse models by gene targeting,which have great application potential in biomedical research.
基金the 863 Hi-Tech Program. We thank Prof. Yu Jalin of China Agriculture University for providing plasmids Fny 109 and Fny 209.
文摘In order to study the feasibility of Cucumber mosaic virus (CMV) as an expression vector, the full-length cDNA of RNA 3 from strain SD was cloned and the sequence around the start codon of the coat protein (CP) gene was modified to create an Nsi I site for insertion of foreign genes. The CP gene was replaced by the green fluorescent protein (GFP) gene. The cDNAs of Fny RNAs 1 and 2 and the chimeric SD RNA 3 were cloned between the modified 35S promoter and terminator. Tobacco protoplasts were transfected with a mixture of the viral cDNAs containing 35S promoter and terminator as a replacement vector and expressed GFP. A complementation system was established when the replacement vector was inoculated onto the transgenic tobacco plants expressing SD-CMV CP. GFP was detected in the inoculated leaves in 5 of 18 tested plants and in the first upper systemic leaf of one of the 5 plants ten days after inoculation. However, no GFP could be detected in all the plants one month after inoculation. Recombination between the CMV vector and the CP transgene was proved by retro-transcriptional polymerase chain reaction (RT-PCR) and verified by DNA sequencing. Our results argue against the feasibility of the CMV-based replacement vector trans-complemented by the CP transgene, and at the same time, enlighten ways to improve the CMV-based expression vector and the biosafety of CMV CP-mediated virus resistant transgenic plants.
基金supported by the Department of Veterans Affairs(VA Merit Award BX004256)(to AMA)Emory Department of Neurosurgery Catalyst GrantEmory Medical Care Foundation Grant(to AMA and JG)。
文摘Spinal cord injury remains a major cause of disability in young adults,and beyond acute decompression and rehabilitation,there are no pharmacological treatments to limit the progression of injury and optimize recovery in this population.Following the thorough investigation of the complement system in triggering and propagating cerebral neuroinflammation,a similar role for complement in spinal neuroinflammation is a focus of ongoing research.In this work,we survey the current literature investigating the role of complement in spinal cord injury including the sources of complement proteins,triggers of complement activation,and role of effector functions in the pathology.We study relevant data demonstrating the different triggers of complement activation after spinal cord injury including direct binding to cellular debris,and or activation via antibody binding to damage-associated molecular patterns.Several effector functions of complement have been implicated in spinal cord injury,and we critically evaluate recent studies on the dual role of complement anaphylatoxins in spinal cord injury while emphasizing the lack of pathophysiological understanding of the role of opsonins in spinal cord injury.Following this pathophysiological review,we systematically review the different translational approaches used in preclinical models of spinal cord injury and discuss the challenges for future translation into human subjects.This review emphasizes the need for future studies to dissect the roles of different complement pathways in the pathology of spinal cord injury,to evaluate the phases of involvement of opsonins and anaphylatoxins,and to study the role of complement in white matter degeneration and regeneration using translational strategies to supplement genetic models.
基金supported by the earmarked fund for China Agriculture Research System(CARS-40)the Key Research and Development Project of Yangzhou(Modern Agriculture),China(YZ2022052)the‘‘High-end Talent Support Program’’of Yangzhou University,China。
文摘H7N9 subtype avian influenza virus poses a great challenge for poultry industry.Newcastle disease virus(NDV)-vectored H7N9 avian influenza vaccines(NDV_(vec)H7N9)are effective in disease control because they are protective and allow mass administration.Of note,these vaccines elicit undetectable H7N9-specific hemagglutination-inhibition(HI)but high IgG antibodies in chickens.However,the molecular basis and protective mechanism underlying this particular antibody immunity remain unclear.Herein,immunization with an NDV_(vec)H7N9 induced low anti-H7N9 HI and virus neutralization titers but high levels of hemagglutinin(HA)-binding IgG antibodies in chickens.Three residues(S150,G151 and S152)in HA of H7N9 virus were identified as the dominant epitopes recognized by the NDV_(vec)H7N9 immune serum.Passively transferred NDV_(vec)H7N9 immune serum conferred complete protection against H7N9 virus infection in chickens.The NDV_(vec)H7N9 immune serum can mediate a potent lysis of HA-expressing and H7N9 virus-infected cells and significantly suppress H7N9 virus infectivity.These activities of the serum were significantly impaired after heat-inactivation or treatment with complement inhibitor,suggesting the engagement of the complement system.Moreover,mutations in the 150-SGS-152 sites in HA resulted in significant reductions in cell lysis and virus neutralization mediated by the NDV_(vec)H7N9 immune serum,indicating the requirement of antibody-antigen binding for complement activity.Therefore,antibodies induced by the NDV_(vec)H7N9 can activate antibody-dependent complement-mediated lysis of H7N9 virus-infected cells and complement-mediated neutralization of H7N9 virus.Our findings unveiled a novel role of the complement in protection conferred by the NDV_(vec)H7N9,highlighting a potential benefit of engaging the complement system in H7N9 vaccine design.
基金supported by the Fundamental Research Program of Shanxi Province of China,No.20210302124277the Science Foundation of Shanxi Bethune Hospital,No.2021YJ13(both to JW)。
文摘Repetitive traumatic brain injury impacts adult neurogenesis in the hippocampal dentate gyrus,leading to long-term cognitive impairment.However,the mechanism underlying this neurogenesis impairment remains unknown.In this study,we established a male mouse model of repetitive traumatic brain injury and performed long-term evaluation of neurogenesis of the hippocampal dentate gyrus after repetitive traumatic brain injury.Our results showed that repetitive traumatic brain injury inhibited neural stem cell proliferation and development,delayed neuronal maturation,and reduced the complexity of neuronal dendrites and spines.Mice with repetitive traumatic brain injuryalso showed deficits in spatial memory retrieval.Moreover,following repetitive traumatic brain injury,neuroinflammation was enhanced in the neurogenesis microenvironment where C1q levels were increased,C1q binding protein levels were decreased,and canonical Wnt/β-catenin signaling was downregulated.An inhibitor of C1 reversed the long-term impairment of neurogenesis induced by repetitive traumatic brain injury and improved neurological function.These findings suggest that repetitive traumatic brain injury–induced C1-related inflammation impairs long-term neurogenesis in the dentate gyrus and contributes to spatial memory retrieval dysfunction.
基金National Institutes of Health(NIH):National Heart,Lung,and Blood Institute(NHLBI:R01-HL164772,R01-HL159062,R01-HL146691,T32-HL144456)National Institute of Diabetes and Digestive and Kidney Diseases(NIDDK:R01-DK123259,R01-DK033823)+2 种基金National Center for Advancing Translational Sciences(NCATS:UL1-TR002556-06,UM1-TR004400)(to Gaetano Santulli)Diabetes Action Research and Education Foundation(to Gaetano Santulli)Monique Weill-Caulier and Irma T.Hirschl Trusts(to Gaetano Santulli).
文摘Diabetic cardiomyopathy is a disorder of the cardiac muscle that affects patients with diabetes.The exact mechanisms underlying diabetic cardiomyopathy are mostly unknown,but several factors have been implicated in the pathogenesis of the disease and its progression towards heart failure,including endothelial dysfunction,autonomic neuropathy,metabolic alterations,oxidative stress,and alterations in ion homeostasis,especially calcium transients[1].In Military Medical Research,Jiang et al.[2]sought to determine the functional role of complement factor D(Adipsin)in the pathophysiology of diabetic cardiomyopathy.
基金Supported by Natural Science Foundation of Guangxi,No.2020GXNSFDA238006Special Fund of the Central Government Guiding Local Scientific and Technological Development by Guangxi Science and Technology Department,No.GuikeZY21195024Research Enhancement Project for Junior Faculty in Higher Education Institutes of Guangxi,No.2018KY0419.
文摘BACKGROUND Complement activation is recognized as an important factor in the progression of liver damage caused by acetaminophen(APAP).However,the role of the complement inhibitor C2-FH in APAP-induced liver injury remains unclear.AIM To explore C2-FH in protecting against APAP-induced liver injury by inhibiting complement activation.METHODS A model of APAP-induced liver injury was used to study the protective effect of C2-FH on liver injury.C2-FH was administered through intraperitoneal injection 30 minutes after APAP treatment.We detected the effects of C2-FH on liver function,inflammatory response and complement activation.Additionally,RNA-sequencing(RNA-Seq)analysis was conducted to understand the mechanism through which C2-FH provides protection against APAP-induced liver injury.RESULTS C2-FH inhibited the increase in serum alanine aminotransferase activity,aspartate aminotransferase activity and lactate dehydrogenase,and reduced liver tissue necrosis caused by APAP.Moreover,it attenuated the inflammatory response and inhibited complement activation in APAP-induced liver injury.RNA-Seq analysis provided additional explanations for the protective role of C2-FH against APAP-induced liver injury.CONCLUSION C2-FH attenuates APAP-induced liver injury by inhibiting complement activation.
文摘BACKGROUND Complement components could contribute to the tumor microenvironment and the systemic immune response.Nevertheless,their role in colorectal cancer(CRC)remains a contentious subject.AIM To elucidate the relationship between complement components and CRC risk and clinical characteristics.METHODS Searches were conducted in PubMed,the Cochrane Library,and the China National Knowledge Infrastructure database until June 1,2023.We included cohort studies encompassing participants aged≥18 years,investigating the association between complement components and CRC.The studies were of moderate quality or above,as determined by the Agency for Healthcare Research and Quality.The meta-analysis employed fixed-effects or random-effects models based on the I^(2)test,utilizing risk ratio(RR)and their corresponding 95%confidence interval(CI)for outcomes.Sensitivity and subgroup analyses were performed to validate the robustness of the collective estimates and identify the source of heterogeneity.RESULTS Data from 15 studies,comprising 1631 participants that met the inclusion criteria,were included in the meta-analysis.Our findings indicated that protein levels of cluster of differentiation 46(CD46)(RR=3.66,95%CI:1.75-7.64,P<0.001),CD59(RR=2.86,95%CI:1.36-6.01,P=0.005),and component 1(C1)(RR=5.88,95%CI:1.75-19.73,P=0.004)and serum levels of C3(standardized mean difference=1.82,95%CI:0.06-3.58,P=0.040)were significantly elevated in patients with CRC compared to healthy controls.Strong expression of CD55 or CD59 was associated with a higher incidence of lymph node metastasis,whereas strong CD46 expression correlated with a higher incidence of tumor differentiation compared to low CD46 expression(P<0.05 for all).Although specific pooled results demonstrated notable heterogeneity,subgroup analyses pointed to regional differences as the primary source of inconsistency among the studies.CONCLUSION Our analysis underscores that increased levels of specific complement components are associated with a heightened risk of CRC,emphasizing the potential significance of monitoring elevated complement component levels.
文摘In this editorial,we review the work of Razali et al published in World J Gas-troenterology,with a particular focus on the effect of rs10889677 variation in the phosphatidylinositol 3-kinase(PI3K)pathway and buparlisib on colitis-associated cancer.The role of PI3K in promoting cancer progression has been widely recognized,as it is involved in regulating the survival,differentiation,and prolif-eration of cancer cells.The complement Clq/TNF-related protein 6(CTRP6)is a newer tumor-associated factor.Recent studies have revealed the pro-tumor effect of CTRP6 in gastric cancer,hepatocellular carcinoma,colorectal cancer,and other gastrointestinal tumors through the PI3K pathway.This article attempts to reveal the mechanism through which the CTRP6 affects the development of digestive system tumors through the PI3K pathway by summarizing recent research.
文摘BACKGROUND Colon cancer(CC)occurrence and progression are considerably influenced by the tumor microenvironment.However,the exact underlying regulatory mechanisms remain unclear.AIM To investigate immune infiltration-related differentially expressed genes(DEGs)in CC and specifically explored the role and potential molecular mechanisms of complement factor I(CFI).METHODS Immune infiltration-associated DEGs were screened for CC using bioinformatics.Quantitative reverse transcription polymerase chain reaction was used to examine hub DEGs expression in the CC cell lines.Stable CFI-knockdown HT29 and HCT116 cell lines were constructed,and the diverse roles of CFI in vitro were assessed using CCK-8,5-ethynyl-2’-deoxyuridine,wound healing,and transwell assays.Hematoxylin and eosin staining and immunohistochemistry staining were employed to evaluate the influence of CFI on the tumorigenesis of CC xenograft models constructed using BALB/c male nude mice.Key proteins associated with glycolysis and the Wnt pathway were measured using western blotting.RESULTS Six key immune infiltration-related DEGs were screened,among which the expression of CFI,complement factor B,lymphoid enhancer binding factor 1,and SRY-related high-mobility-group box 4 was upregulated,whereas that of fatty acid-binding protein 1,and bone morphogenic protein-2 was downregulated.Furthermore,CFI could be used as a diagnostic biomarker for CC.Functionally,CFI silencing inhibited CC cell proliferation,migration,invasion,and tumor growth.Mechanistically,CFI knockdown downregulated the expression of key glycolysis-related proteins(glucose transporter type 1,hexokinase 2,lactate dehydrogenase A,and pyruvate kinase M2)and the Wnt pathway-related proteins(β-catenin and c-Myc).Further investigation indicated that CFI knockdown inhibited glycolysis in CC by blocking the Wnt/β-catenin/c-Myc pathway.CONCLUSION The findings of the present study demonstrate that CFI plays a crucial role in CC development by influencing glycolysis and the Wnt/β-catenin/c-Myc pathway,indicating that it could serve as a promising target for therapeutic intervention in CC.
文摘Recently,new findings have been clarified concerning both pathogenesis and treatment of IgA nephritis.The four hits theory has been confirmed but several genetic wide association studies have allowed finding several genes connected with the pathogenesis of the disease.All these new genes apply to each of the four hits.Additionally,new discoveries concerning the microbiota and its connection with immune system and IgA generation have allowed finding out the role of the mucosa in IgA nephropathy pathogenesis.The IgA treatment is also changed included the future possibilities.The treatment of the chronic kidney disease,associated with the nephropathy,is mandatory,since the beginning of the disease.The classical immunosuppressive agents have poor effect.The corticosteroids remain an important cornerstone in any phase of the disease.More effect is related to the treatment of B cells and plasma cells.In particular,in very recent studies have been documented the efficacy of anti B cell-activating factor and anti A proliferation-inducing ligand agents.Most of these studies are to date in phase II/III.Finally,new agents targeting complement are arising.These agents also are still in randomized trials and act principally in hit 4 where the immunocomplexes in the mesangium activate the different pathways of the complement cascade.
基金supported by National Natural Science Foundation of China (No. 81072673)
文摘The accessory proteins(3a, 3b, 6, 7a, 7b, 8a, 8b, 9b and ORF14), predicted unknown proteins(PUPs) encoded by the genes, are considered to be unique to the severe acute respiratory syndrome coronavirus(SARS-Co V) genome. These proteins play important roles in various biological processes mediated by interactions with their partners. However, very little is known about the interactions among these accessory proteins. Here, a EYFP(enhanced yellow fluorescent protein) bimolecular fluorescence complementation(BiFC) assay was used to detect the interactions among accessory proteins. 33 out of 81 interactions were identified by BiFC, much more than that identified by the yeast two-hybrid(Y2H)system. This is the first report describing direct visualization of interactions among accessory proteins of SARS-CoV. These findings attest to the general applicability of the BiFC system for the verification of protein-protein interactions.