This research presents an improved real-time face recognition system at a low<span><span><span style="font-family:" color:red;"=""> </span></span></span><...This research presents an improved real-time face recognition system at a low<span><span><span style="font-family:" color:red;"=""> </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">resolution of 15 pixels with pose and emotion and resolution variations. We have designed our datasets named LRD200 and LRD100, which have been used for training and classification. The face detection part uses the Viola-Jones algorithm, and the face recognition part receives the face image from the face detection part to process it using the Local Binary Pattern Histogram (LBPH) algorithm with preprocessing using contrast limited adaptive histogram equalization (CLAHE) and face alignment. The face database in this system can be updated via our custom-built standalone android app and automatic restarting of the training and recognition process with an updated database. Using our proposed algorithm, a real-time face recognition accuracy of 78.40% at 15</span></span></span><span><span><span style="font-family:;" "=""> </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">px and 98.05% at 45</span></span></span><span><span><span style="font-family:;" "=""> </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">px have been achieved using the LRD200 database containing 200 images per person. With 100 images per person in the database (LRD100) the achieved accuracies are 60.60% at 15</span></span></span><span><span><span style="font-family:;" "=""> </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">px and 95% at 45</span></span></span><span><span><span style="font-family:;" "=""> </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">px respectively. A facial deflection of about 30</span></span></span><span><span><span><span><span style="color:#4F4F4F;font-family:-apple-system, " font-size:16px;white-space:normal;background-color:#ffffff;"="">°</span></span><span> on either side from the front face showed an average face recognition precision of 72.25%-81.85%. This face recognition system can be employed for law enforcement purposes, where the surveillance camera captures a low-resolution image because of the distance of a person from the camera. It can also be used as a surveillance system in airports, bus stations, etc., to reduce the risk of possible criminal threats.</span></span></span></span>展开更多
Rapid coal-rock identification is one of the key technologies for intelligent and unmanned coal mining.Currently,the existing image recognition algorithms cannot satisfy practical needs in terms of recognition speed a...Rapid coal-rock identification is one of the key technologies for intelligent and unmanned coal mining.Currently,the existing image recognition algorithms cannot satisfy practical needs in terms of recognition speed and accuracy.In view of the evident differences between coal and rock in visual attributes such as color,gloss and texture,the complete local binary pattern(CLBP)image feature descriptor is introduced for coal and rock image recognition.Given that the original algorithm oversimplifies local texture features by ignoring imaging information from higher-order pixels and the concave and convex areas between adjacent sampling points,this paper proposes a higher-order differential median CLBP image feature descriptor to replace the original CLBP center pixel gray with a local gray median,and replace the binary differential with a second-order differential.Meanwhile,for the high dimensionality of CLBP descriptor histogram and feature redundancy,deep learning perceptual field theory is introduced to realize data nonlinear dimensionality reduction and deep feature extraction.With relevant experiments conducted,the following conclusion can be drawn:(1)Compared with that of the original CLBP,the recognition accuracy of the improved CLBP algorithm is greatly improved and finally stabilized above 94.3%under strong noise interference;(2)Compared with that of the original CLBP model,the single image recognition time of the coal rock image recognition model fusing the improved CLBP and the receptive field theory is 0.0035 s,a reduction of 71.0%;compared with the improved CLBP model(without the fusion of receptive field theory),it can shorten the recognition time by 97.0%,but the accuracy rate still maintains more than 98.5%.The method offers a valuable technical reference for the fields of mineral development and deep mining.展开更多
为进一步提高牛肉大理石纹评级的正确率,提出了基于完整局部二值模式(Completed Local Binary Pattern,CLBP)、改进核主成分分析(Kernel Principal Component Analysis,KPCA)和随机森林(Random Forests,RF)的牛肉大理石纹评级方法。首先...为进一步提高牛肉大理石纹评级的正确率,提出了基于完整局部二值模式(Completed Local Binary Pattern,CLBP)、改进核主成分分析(Kernel Principal Component Analysis,KPCA)和随机森林(Random Forests,RF)的牛肉大理石纹评级方法。首先,利用CLBP提取牛肉大理石纹图像的纹理特征;其次,采用混沌蜂群算法对KPCA的核参数进行优化,使KPCA的降维效果和特征提取达到最优,获得表征牛肉大理石纹样本图像的特征向量;最后,使用随机森林完成牛肉大理石纹样本的分级识别,获得最终评级结果。大量实验结果表明,与基于分形维和图像特征的方法、基于灰度共生矩阵和BP(Back Propagation)神经网络法相比,本文方法所得识别率最高。展开更多
文摘This research presents an improved real-time face recognition system at a low<span><span><span style="font-family:" color:red;"=""> </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">resolution of 15 pixels with pose and emotion and resolution variations. We have designed our datasets named LRD200 and LRD100, which have been used for training and classification. The face detection part uses the Viola-Jones algorithm, and the face recognition part receives the face image from the face detection part to process it using the Local Binary Pattern Histogram (LBPH) algorithm with preprocessing using contrast limited adaptive histogram equalization (CLAHE) and face alignment. The face database in this system can be updated via our custom-built standalone android app and automatic restarting of the training and recognition process with an updated database. Using our proposed algorithm, a real-time face recognition accuracy of 78.40% at 15</span></span></span><span><span><span style="font-family:;" "=""> </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">px and 98.05% at 45</span></span></span><span><span><span style="font-family:;" "=""> </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">px have been achieved using the LRD200 database containing 200 images per person. With 100 images per person in the database (LRD100) the achieved accuracies are 60.60% at 15</span></span></span><span><span><span style="font-family:;" "=""> </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">px and 95% at 45</span></span></span><span><span><span style="font-family:;" "=""> </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">px respectively. A facial deflection of about 30</span></span></span><span><span><span><span><span style="color:#4F4F4F;font-family:-apple-system, " font-size:16px;white-space:normal;background-color:#ffffff;"="">°</span></span><span> on either side from the front face showed an average face recognition precision of 72.25%-81.85%. This face recognition system can be employed for law enforcement purposes, where the surveillance camera captures a low-resolution image because of the distance of a person from the camera. It can also be used as a surveillance system in airports, bus stations, etc., to reduce the risk of possible criminal threats.</span></span></span></span>
基金Scientific and technological innovation project of colleges and universities in Shanxi Province,Grant/Award Number:2020L0294Shanxi Province Science Foundation for Youths,Grant/Award Number:201901D211249。
文摘Rapid coal-rock identification is one of the key technologies for intelligent and unmanned coal mining.Currently,the existing image recognition algorithms cannot satisfy practical needs in terms of recognition speed and accuracy.In view of the evident differences between coal and rock in visual attributes such as color,gloss and texture,the complete local binary pattern(CLBP)image feature descriptor is introduced for coal and rock image recognition.Given that the original algorithm oversimplifies local texture features by ignoring imaging information from higher-order pixels and the concave and convex areas between adjacent sampling points,this paper proposes a higher-order differential median CLBP image feature descriptor to replace the original CLBP center pixel gray with a local gray median,and replace the binary differential with a second-order differential.Meanwhile,for the high dimensionality of CLBP descriptor histogram and feature redundancy,deep learning perceptual field theory is introduced to realize data nonlinear dimensionality reduction and deep feature extraction.With relevant experiments conducted,the following conclusion can be drawn:(1)Compared with that of the original CLBP,the recognition accuracy of the improved CLBP algorithm is greatly improved and finally stabilized above 94.3%under strong noise interference;(2)Compared with that of the original CLBP model,the single image recognition time of the coal rock image recognition model fusing the improved CLBP and the receptive field theory is 0.0035 s,a reduction of 71.0%;compared with the improved CLBP model(without the fusion of receptive field theory),it can shorten the recognition time by 97.0%,but the accuracy rate still maintains more than 98.5%.The method offers a valuable technical reference for the fields of mineral development and deep mining.
文摘为进一步提高牛肉大理石纹评级的正确率,提出了基于完整局部二值模式(Completed Local Binary Pattern,CLBP)、改进核主成分分析(Kernel Principal Component Analysis,KPCA)和随机森林(Random Forests,RF)的牛肉大理石纹评级方法。首先,利用CLBP提取牛肉大理石纹图像的纹理特征;其次,采用混沌蜂群算法对KPCA的核参数进行优化,使KPCA的降维效果和特征提取达到最优,获得表征牛肉大理石纹样本图像的特征向量;最后,使用随机森林完成牛肉大理石纹样本的分级识别,获得最终评级结果。大量实验结果表明,与基于分形维和图像特征的方法、基于灰度共生矩阵和BP(Back Propagation)神经网络法相比,本文方法所得识别率最高。