This paper discusses the order-preserving convergence for spectral approximation of the self-adjoint completely continuous operator T.Under the condition that the approximate operator Th converges to T in norm,it is p...This paper discusses the order-preserving convergence for spectral approximation of the self-adjoint completely continuous operator T.Under the condition that the approximate operator Th converges to T in norm,it is proven that the k-th eigenvalue of Th converges to the k-th eigenvalue of T.(We sorted the positive eigenvalues in decreasing order and negative eigenvalues in increasing order.) Then we apply this result to conforming elements,nonconforming elements and mixed elements of self-adjoint elliptic differential operators eigenvalue problems,and prove that the k-th approximate eigenvalue obtained by these methods converges to the k-th exact eigenvalue.展开更多
In this paper, a new class of Banach spaces, termed as Banach spaces with property (MB), will be introduced. It is stated that a space X has property (MB) if every V -subset of X* is an L-subset of X* . We describe th...In this paper, a new class of Banach spaces, termed as Banach spaces with property (MB), will be introduced. It is stated that a space X has property (MB) if every V -subset of X* is an L-subset of X* . We describe those spaces which have property (MB) . Also, we show that if a Banach space X has property (MB) and Banach space Y does not contain , then every operator is completely continuous.展开更多
E E. Browder and W. V. Petryshyn defined the topological degree for A- proper mappings and then W. V. Petryshyn studied a class of A-proper mappings, namely, P1-compact mappings and obtained a number of important fixe...E E. Browder and W. V. Petryshyn defined the topological degree for A- proper mappings and then W. V. Petryshyn studied a class of A-proper mappings, namely, P1-compact mappings and obtained a number of important fixed point theorems by virtue of the topological degree theory. In this paper, following W. V. Petryshyn, we continue to study P1-compact mappings and investigate the boundary condition, under which many new fixed point theorems of P1-compact mappings are obtained. On the other hand, this class of A-proper mappings with the boundedness property includes completely continuous operators and so, certain interesting new fixed point theorems for completely continuous operators are obtained immediately. As a result of it, our results generalize several famous theorems such as Leray-Schauder's theorem, Rothe's theorem, Altman's theorem, Petryshyn's theorem, etc.展开更多
Using a fixed point method, in this paper we discuss the existence and uniqueness of positive solutions to a class system of nonlinear fractional differential equations with delay and obtain some new results.
In this paper, we use cone theory and topological degree theory to study superlinear systemof integral equations, and obtain existence theorems for non-trivial solutions; moreover, we applythe results to two-point bo...In this paper, we use cone theory and topological degree theory to study superlinear systemof integral equations, and obtain existence theorems for non-trivial solutions; moreover, we applythe results to two-point boundary problems of ordinary differential system of equations.展开更多
In this paper we consider a nonlinear first-order boundary value problem on a time scale. The existence results of three positive solutions are obtained using fixed point theorems. Finally,examples are presented to il...In this paper we consider a nonlinear first-order boundary value problem on a time scale. The existence results of three positive solutions are obtained using fixed point theorems. Finally,examples are presented to illustrate the main results.展开更多
基金supported by the National Natural Science Foundation of China (Grant No. 10761003)Guizhou Province Scientific Research for Senior Personnels
文摘This paper discusses the order-preserving convergence for spectral approximation of the self-adjoint completely continuous operator T.Under the condition that the approximate operator Th converges to T in norm,it is proven that the k-th eigenvalue of Th converges to the k-th eigenvalue of T.(We sorted the positive eigenvalues in decreasing order and negative eigenvalues in increasing order.) Then we apply this result to conforming elements,nonconforming elements and mixed elements of self-adjoint elliptic differential operators eigenvalue problems,and prove that the k-th approximate eigenvalue obtained by these methods converges to the k-th exact eigenvalue.
文摘In this paper, a new class of Banach spaces, termed as Banach spaces with property (MB), will be introduced. It is stated that a space X has property (MB) if every V -subset of X* is an L-subset of X* . We describe those spaces which have property (MB) . Also, we show that if a Banach space X has property (MB) and Banach space Y does not contain , then every operator is completely continuous.
基金Supported in part by Education Ministry,Anhui Province,China(No:2003kj047zd)
文摘E E. Browder and W. V. Petryshyn defined the topological degree for A- proper mappings and then W. V. Petryshyn studied a class of A-proper mappings, namely, P1-compact mappings and obtained a number of important fixed point theorems by virtue of the topological degree theory. In this paper, following W. V. Petryshyn, we continue to study P1-compact mappings and investigate the boundary condition, under which many new fixed point theorems of P1-compact mappings are obtained. On the other hand, this class of A-proper mappings with the boundedness property includes completely continuous operators and so, certain interesting new fixed point theorems for completely continuous operators are obtained immediately. As a result of it, our results generalize several famous theorems such as Leray-Schauder's theorem, Rothe's theorem, Altman's theorem, Petryshyn's theorem, etc.
文摘Using a fixed point method, in this paper we discuss the existence and uniqueness of positive solutions to a class system of nonlinear fractional differential equations with delay and obtain some new results.
文摘In this paper, we use cone theory and topological degree theory to study superlinear systemof integral equations, and obtain existence theorems for non-trivial solutions; moreover, we applythe results to two-point boundary problems of ordinary differential system of equations.
基金Supported by the National Natural Science Foundation of China (No.10926051, 60974145)the Fundamental Research Funds for the Central Universities (No.2010ZY30)
文摘In this paper we consider a nonlinear first-order boundary value problem on a time scale. The existence results of three positive solutions are obtained using fixed point theorems. Finally,examples are presented to illustrate the main results.