With the continual increase in switching speed and rating of power semiconductors, the switching voltage spike becomes a serious problem. This paper describes a new technique of driving pulse edge modulation for insul...With the continual increase in switching speed and rating of power semiconductors, the switching voltage spike becomes a serious problem. This paper describes a new technique of driving pulse edge modulation for insulated gate bipolar transistors(IGBTs). By modulating the density and width of the pulse trains, without regulating the hardware circuit, the slope of the gate driving voltage is controlled to change the switching speed. This technique is used in the driving circuit based on complex programmable logic devices(CPLDs), and the switching voltage spike of IGBTs can be restrained through software, which is easier and more flexible to adjust. Experimental results demonstrate the effectiveness and practicability of the proposed method.展开更多
基金Project supported by the National Natural Science Foundation of China(No.51177147)the Zhejiang Key Science and Technology Innovation Group Program,China(No.2010R50021)
文摘With the continual increase in switching speed and rating of power semiconductors, the switching voltage spike becomes a serious problem. This paper describes a new technique of driving pulse edge modulation for insulated gate bipolar transistors(IGBTs). By modulating the density and width of the pulse trains, without regulating the hardware circuit, the slope of the gate driving voltage is controlled to change the switching speed. This technique is used in the driving circuit based on complex programmable logic devices(CPLDs), and the switching voltage spike of IGBTs can be restrained through software, which is easier and more flexible to adjust. Experimental results demonstrate the effectiveness and practicability of the proposed method.