I. THE COMPLEXITY OFBIOLOGICAL RESPONSESFor an organism, to be living or notdepends on its response to foreign matters.Facing the increasing amount and diversi-ty of chemicals, natural and synthetic, tounderstand the ...I. THE COMPLEXITY OFBIOLOGICAL RESPONSESFor an organism, to be living or notdepends on its response to foreign matters.Facing the increasing amount and diversi-ty of chemicals, natural and synthetic, tounderstand the principles of the biologicalresponses becomes extremely importantin pursuing the way of rational utiliza-tion and governing the foreign matters.However, most biological responses aretoo complex to explore their nature. Forinstance, the risk to human beings andorganisms related to the application ofrare earths in agriculture, forestation, fish-ery and husbandry has been argued展开更多
Piperidine absorbs CO2 and H2O in air to form a molecular complex: piperidium-l-piperidinecarboxylate-H2O. The structure of the complex was characterized by X-ray single crystal diffraction. The crystal structure was...Piperidine absorbs CO2 and H2O in air to form a molecular complex: piperidium-l-piperidinecarboxylate-H2O. The structure of the complex was characterized by X-ray single crystal diffraction. The crystal structure was determined to be triclinic, space group P1^-with a=0.648 6(8) nm, b=0.809 200) nm, c= 1.357 1(16) nm, a=96.96706)°, β =102.506(15)°,γ=104.202 05)°, Z=2. The complex is stabilized via five hydrogen bonds between the three components, N-O electrostatic interaction and O-O interaction (electron transfer) betweenl-piperidinecarboxylate and H2O. Due to electron transference of carbamate ion, the oxygen atom in water molecule is strongly negatively charged and the O-H bond is considerably shorter than that of the free molecule of water. The formation of the molecular complex is a reversible process and will decompose upon heating. The mechanism of formation and stabilization is further investigated herein.展开更多
The palladium complex of the molecular complex of poly(4 vinylpyridine) with acetic acid(PVP/ HAc Pd) was prepared. Its catalytic activity for the hydrogenation of nitrobenzene was found much higher than that of the c...The palladium complex of the molecular complex of poly(4 vinylpyridine) with acetic acid(PVP/ HAc Pd) was prepared. Its catalytic activity for the hydrogenation of nitrobenzene was found much higher than that of the corresponding palladium complex of poly(4 vinylpyridine). In the presence of a strong inorganic alkali, especially potassium hydroxide, the catalytic activity is greatly improved. The suitable hydrogenation condition for PVP/HAc Pd is to use 0 1 mol/L ethanol solution of potassium hydroxide as the hydrogenation medium and the hydrogenation is carried out at 45 ℃.展开更多
Piperidine absorbs CO2 and H2O contents in air to form a molecular complex: piperidium-1-piperidinecarboxylate-H2O. The structure of the complex was characterized by FT-IR and NMR. The complex is stabilized via five ...Piperidine absorbs CO2 and H2O contents in air to form a molecular complex: piperidium-1-piperidinecarboxylate-H2O. The structure of the complex was characterized by FT-IR and NMR. The complex is stabilized via five hydrogen bonds between the three components, N…O electrostatic interaction and O…O interaction (electron transfer) betweenl-piperidinecarboxylate and H2O. Through electron transfer from the carbamate ion, the oxygen atom in water molecule is strongly negatively charged and the O-H bond is considerably shorter than that of free water molecule. The formation of the molecular complex is a reversible process and will decompose upon heating. The mechanism of formation and stabilization is further investigated herein.展开更多
Topological properties of charge distribution for the title complexes and their constituent are analyzed by using ab initio calculations at 3-21G basis set. The results obtained are compared with those originated from...Topological properties of charge distribution for the title complexes and their constituent are analyzed by using ab initio calculations at 3-21G basis set. The results obtained are compared with those originated from ab initio and energy decomposition method. It has been determined that the title molecular complexes are T-shaped. The characteristics of the bonds and the changes originated from the formation of the complexes are discussed.展开更多
The crystal structure of the title complex salt has been determined by single-crystal X-ray structure analysis. The crystal data are as follows; Monoclinic, P21/c, a=15.6480(10)A,b=16.7870(10)A, c=10.347(2)A, β=90.79...The crystal structure of the title complex salt has been determined by single-crystal X-ray structure analysis. The crystal data are as follows; Monoclinic, P21/c, a=15.6480(10)A,b=16.7870(10)A, c=10.347(2)A, β=90.790(10), V=2717.7(6)A3, Z=3, and R=0.0333 for 4789 unique reflections. The complex anion has a pseudo-octahedral structure distorted more than the CrⅢand CoⅢ analogs, in which cach iminodiacetato ligand (ida2-) is coordinated in a facial fashion with the two N atoms in a cis configuration, resulting in an unsyin-fac structure.展开更多
The particle structure of a complex system has been explored through a unique Evans' s homogenous nonequilibrium molecular dynamics(HNEMD) simulation technique. The crystalline order–disorder structures(OD-struct...The particle structure of a complex system has been explored through a unique Evans' s homogenous nonequilibrium molecular dynamics(HNEMD) simulation technique. The crystalline order–disorder structures(OD-structures) and the corresponding energies of three-dimensional(3 D) nonideal complex systems(NICSs) have been measured over a wide range of plasma states(■, κ) for a body-centered cubic(BCC) structure. The projected technique provides accurate ODstructures with fast convergence and applicable to very small size effect for different temperatures(≡ 1/■) and constant force field(F~*) values. The OD-structure obtained through HNEMD approach is found to be reasonable agreement and more reliable than those earlier identified by simulation approaches and experimental data of NICSs. New simulations of OD-structures show that dusty plasma remains in crystalline(strongly coupled) state at lower temperature and constant F*values, for the whole simulation runs. Our investigations show that the crystalline structure is changed and the particle structure switches from intermediate to disorder(nonideal gaseous) state with an increase of the system's temperature. It has been shown that the long range order shifts toward lower temperature with increasing κ. The presented technique exhibits that the potential energy has a maximum value when the dusty plasma remains in crystalline states(low temperatures),which confirms earlier 3 D simulation results.展开更多
文摘I. THE COMPLEXITY OFBIOLOGICAL RESPONSESFor an organism, to be living or notdepends on its response to foreign matters.Facing the increasing amount and diversi-ty of chemicals, natural and synthetic, tounderstand the principles of the biologicalresponses becomes extremely importantin pursuing the way of rational utiliza-tion and governing the foreign matters.However, most biological responses aretoo complex to explore their nature. Forinstance, the risk to human beings andorganisms related to the application ofrare earths in agriculture, forestation, fish-ery and husbandry has been argued
基金Supported by Project of Education Department of Liaoning Province(20040084)
文摘Piperidine absorbs CO2 and H2O in air to form a molecular complex: piperidium-l-piperidinecarboxylate-H2O. The structure of the complex was characterized by X-ray single crystal diffraction. The crystal structure was determined to be triclinic, space group P1^-with a=0.648 6(8) nm, b=0.809 200) nm, c= 1.357 1(16) nm, a=96.96706)°, β =102.506(15)°,γ=104.202 05)°, Z=2. The complex is stabilized via five hydrogen bonds between the three components, N-O electrostatic interaction and O-O interaction (electron transfer) betweenl-piperidinecarboxylate and H2O. Due to electron transference of carbamate ion, the oxygen atom in water molecule is strongly negatively charged and the O-H bond is considerably shorter than that of the free molecule of water. The formation of the molecular complex is a reversible process and will decompose upon heating. The mechanism of formation and stabilization is further investigated herein.
基金Supported by the Outstanding Youngs Science Foudation of Henan Province(1999)
文摘The palladium complex of the molecular complex of poly(4 vinylpyridine) with acetic acid(PVP/ HAc Pd) was prepared. Its catalytic activity for the hydrogenation of nitrobenzene was found much higher than that of the corresponding palladium complex of poly(4 vinylpyridine). In the presence of a strong inorganic alkali, especially potassium hydroxide, the catalytic activity is greatly improved. The suitable hydrogenation condition for PVP/HAc Pd is to use 0 1 mol/L ethanol solution of potassium hydroxide as the hydrogenation medium and the hydrogenation is carried out at 45 ℃.
基金Supported by Project of Education Department of Liaoning Province (20040084)
文摘Piperidine absorbs CO2 and H2O contents in air to form a molecular complex: piperidium-1-piperidinecarboxylate-H2O. The structure of the complex was characterized by FT-IR and NMR. The complex is stabilized via five hydrogen bonds between the three components, N…O electrostatic interaction and O…O interaction (electron transfer) betweenl-piperidinecarboxylate and H2O. Through electron transfer from the carbamate ion, the oxygen atom in water molecule is strongly negatively charged and the O-H bond is considerably shorter than that of free water molecule. The formation of the molecular complex is a reversible process and will decompose upon heating. The mechanism of formation and stabilization is further investigated herein.
基金Supported by the National Natural Science Foundation of China
文摘Topological properties of charge distribution for the title complexes and their constituent are analyzed by using ab initio calculations at 3-21G basis set. The results obtained are compared with those originated from ab initio and energy decomposition method. It has been determined that the title molecular complexes are T-shaped. The characteristics of the bonds and the changes originated from the formation of the complexes are discussed.
文摘The crystal structure of the title complex salt has been determined by single-crystal X-ray structure analysis. The crystal data are as follows; Monoclinic, P21/c, a=15.6480(10)A,b=16.7870(10)A, c=10.347(2)A, β=90.790(10), V=2717.7(6)A3, Z=3, and R=0.0333 for 4789 unique reflections. The complex anion has a pseudo-octahedral structure distorted more than the CrⅢand CoⅢ analogs, in which cach iminodiacetato ligand (ida2-) is coordinated in a facial fashion with the two N atoms in a cis configuration, resulting in an unsyin-fac structure.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11505286 and 11805272)
文摘The particle structure of a complex system has been explored through a unique Evans' s homogenous nonequilibrium molecular dynamics(HNEMD) simulation technique. The crystalline order–disorder structures(OD-structures) and the corresponding energies of three-dimensional(3 D) nonideal complex systems(NICSs) have been measured over a wide range of plasma states(■, κ) for a body-centered cubic(BCC) structure. The projected technique provides accurate ODstructures with fast convergence and applicable to very small size effect for different temperatures(≡ 1/■) and constant force field(F~*) values. The OD-structure obtained through HNEMD approach is found to be reasonable agreement and more reliable than those earlier identified by simulation approaches and experimental data of NICSs. New simulations of OD-structures show that dusty plasma remains in crystalline(strongly coupled) state at lower temperature and constant F*values, for the whole simulation runs. Our investigations show that the crystalline structure is changed and the particle structure switches from intermediate to disorder(nonideal gaseous) state with an increase of the system's temperature. It has been shown that the long range order shifts toward lower temperature with increasing κ. The presented technique exhibits that the potential energy has a maximum value when the dusty plasma remains in crystalline states(low temperatures),which confirms earlier 3 D simulation results.