期刊文献+
共找到20篇文章
< 1 >
每页显示 20 50 100
Enhancing interfacial stability in solid-state lithium batteries with polymer/garnet solid electrolyte and composite cathode framework 被引量:5
1
作者 Long Chen Xiaoming Qiu +1 位作者 Zhiming Bai Li-Zhen Fan 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第1期210-217,I0007,共9页
The solid-state lithium battery is considered as an ideal next-generation energy storage device owing to its high safety,high energy density and low cost.However,the poor ionic conductivity of solid electrolyte and lo... The solid-state lithium battery is considered as an ideal next-generation energy storage device owing to its high safety,high energy density and low cost.However,the poor ionic conductivity of solid electrolyte and low interfacial stability has hindered the application of solid-state lithium battery.Here,a flexible polymer/garnet solid electrolyte is prepared with poly(ethylene oxide),poly(vinylidene fluoride),Li6.75La3 Zr1.75Ta0.25O12,lithium bis(trifluoromethanesulfonyl)imide and oxalate,which exhibits an ionic conductivity of 2.0 ×10^(-4) S cm^(-1) at 55℃,improved mechanical property,wide electrochemical window(4.8 V vs.Li/Li+),enhanced thermal stabilities.Tiny acidic OX was introduced to inhibit the alkalinity reactions between Li6.75La3 Zr1.75Ta0.25O12 and poly(vinylidene fluoride).In order to improve the interfacial stability between cathode and electrolyte,an Al2 O3@LiNi0.5Co0.2Mn0.3O2 based composite cathode framework is also fabricated with poly(ethylene oxide) polymer and lithium salt as additives.The solid-state lithium battery assembled with polymer/garnet solid electrolyte and composite cathode framework demonstrates a high initial discharge capacity of 150.6 mAh g^(-1) and good capacity retention of 86.7% after 80 cycles at 0.2 C and 55℃,which provides a promising choice for achieving the stable electrode/electrolyte interfacial contact in solid-state lithium batteries. 展开更多
关键词 Li6.75La3Zr1.75Ta0.25O12 Polymer/garnet solid electrolyte Interfacial stability composite cathode framework Lithium metal batteries
下载PDF
Interface engineering for composite cathodes in sulfide-based all-solid-state lithium batteries 被引量:4
2
作者 Yu Li Dechao Zhang +5 位作者 Xijun Xu Zhuosen Wang Zhengbo Liu Jiadong Shen Jun Liu Min Zhu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第9期32-60,共29页
All-solid-state lithium battery(ASLB)based on sulfide-based electrolyte is considered to be a candidate for the next-generation high-energy storage system.Despite the high ionic conductivity of sulfide solid electroly... All-solid-state lithium battery(ASLB)based on sulfide-based electrolyte is considered to be a candidate for the next-generation high-energy storage system.Despite the high ionic conductivity of sulfide solid electrolyte,the poor interfacial stability(mechanically and chemically)between active materials and sulfide solid electrolytes in composite cathodes leads to inferior electrochemical performances,which impedes the practical application of sulfide electrolytes.In the past years,various of strategies have been carried out to achieve an interface with low impedance in the composite cathodes.Herein,a review of recent progress of composite cathodes for all-solid-state sulfide-based lithium batteries is summarized,including the interfacial issues,design strategies,fabrication methods,and characterization techniques.Finally,the main challenges and perspectives of composite cathodes for high-performance all-solidstate batteries are highlighted for future development. 展开更多
关键词 All-solid-state batteries composite cathodes Sulfide solid electrolytes INTERFACE
下载PDF
Fabrication and performance of La(0.8)Sr(0.2)MnO3/YSZ graded composite cathodes for SOFC 被引量:3
3
作者 SUN Kening PIAO Jinhua +3 位作者 ZHANG Naiqing CHEN Xinbing XU Shen ZHOU Derui 《Rare Metals》 SCIE EI CAS CSCD 2008年第3期278-281,共4页
The performance of multi-layer (1 -x)La0.8Sr0.2MnO3/xYSZ graded composite cathodes was studied as electrode materials for intermediate solid oxide fuel cells (SOFC). The thermal expansion coefficient, electrical c... The performance of multi-layer (1 -x)La0.8Sr0.2MnO3/xYSZ graded composite cathodes was studied as electrode materials for intermediate solid oxide fuel cells (SOFC). The thermal expansion coefficient, electrical conductivity, and electrochemical performance of multi-layer composite cathodes were investigated. The thermal expansion coefficient and electrical conductivity decreased with the increase in YSZ content. The (1 -x)Lao.sSr0.EMnO3/xYSZ composite cathode greatly increased the length of the active triple phase boundary line (TPBL) among electrode, electrolyte, and gas phase, leading to a decrease in polarization resistance and an increase in polarization current density. The polarization current density of the triple-layer graded composite cathode (0.77 A/cm2) was the highest and that of the monolayer cathode (0.13 A/cm2) was the lowest. The polarization resistance (Rp) of the triple-layer graded composite cathode was only 0.182 Ω·cm2 and that of the monolayer composite cathode was 0.323 Ω·cm2. The power density of the triple-layer graded composite cathode was the highest and that of the monolayer composite cathode was the lowest. The triple-layer graded composite cathode had superior performance. 展开更多
关键词 MANGANITE composite cathode impedance spectrum triple phase boundary
下载PDF
Structure and Tribological Property of TiBN Nanocomposite Multilayer Synthesized by Ti-BN Composite Cathode Plasma Immersion Ion Implantation and Deposition 被引量:1
4
作者 吕文泉 王浪平 +4 位作者 曹永志 顾至伟 王小峰 闫永达 于福利 《Chinese Physics Letters》 SCIE CAS CSCD 2016年第9期73-76,共4页
A Ti-BN complex cathode is made from Ti and h-BN powders by the powder metallurgy technology, and TiBN coating is obtained by plasma immersion ion implantation and deposition with this Ti-BN composite cathode. The TiB... A Ti-BN complex cathode is made from Ti and h-BN powders by the powder metallurgy technology, and TiBN coating is obtained by plasma immersion ion implantation and deposition with this Ti-BN composite cathode. The TiBN coating shows a self-forming multilayered nanocomposite structure while with relative uniform elemental distributions. High resolution transmission electron microscopy images reveal that the multilayered structure is derived from different grain sizes in the nanocomposite. Due to the existence of h-BN phase, the friction coefficient of the coating is about 0.25. 展开更多
关键词 of in is BN Structure and Tribological Property of TiBN Nanocomposite Multilayer Synthesized by Ti-BN composite cathode Plasma Immersion Ion Implantation and Deposition by TI
下载PDF
Composite Cathode Bi_(1.14)Sr_(0.43)O_(2.14)-Ag for Intermediate-temperature Solid Oxide Fuel Cells
5
作者 高展 张萍 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2008年第3期350-353,共4页
Composites consisting of strontium stabilized bismuth oxide (Bi1.14Sr0.43O2.14, SSB) and silver were investigated as cathodes for intermediate-temperature solid oxide fuel cells with doped ceria electrolyte. There w... Composites consisting of strontium stabilized bismuth oxide (Bi1.14Sr0.43O2.14, SSB) and silver were investigated as cathodes for intermediate-temperature solid oxide fuel cells with doped ceria electrolyte. There were no chemical reactions between the two components. The microstructure of the interfaces between composite cathodes and Ce0.8Sm0.2O1.9 (SDC) electrolytes was examined by scanning electron microscopy (SEM). Impedance spectroscopy measurements show that the performance of cathode fired at 700 ℃ is the best. When the content of Ag2O is 70 wt%, polarization resistance values for the SSB-Ag cathodes are as low as 0.2 Ωcm^2 at 700℃ and 0.29 Ωcm^2 at 650℃. These results are much smaller than some of other reported composite cathodes on doped ceria electrolyte and indicate that SSB-Ag composite is a potential cathode material for intermediate temperature SOFCs. 展开更多
关键词 solid oxide fuel cells (SOFCs) composite cathode strontium stabilized bismuth oxide (SSB) samaria doped ceria (SDC)
下载PDF
Viability of all-solid-state lithium metal battery coupled with oxide solid-state electrolyte and high-capacity cathode
6
作者 Xingxing Jiao Xieyu Xu +6 位作者 Yongjing Wang Xuyang Wang Yaqi Chen Shizhao Xiong Weiqing Yang Zhongxiao Song Yangyang Liu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第4期122-131,共10页
Owing to the utilization of lithium metal as anode with the ultrahigh theoretical capacity density of 3860 mA h g^(-1)and oxide-based ceramic solid-state electrolytes(SE),e.g.,garnet-type Li7La_(3)Zr_(2)O_(12)(LLZO),a... Owing to the utilization of lithium metal as anode with the ultrahigh theoretical capacity density of 3860 mA h g^(-1)and oxide-based ceramic solid-state electrolytes(SE),e.g.,garnet-type Li7La_(3)Zr_(2)O_(12)(LLZO),all-state-state lithium metal batteries(ASLMBs)have been widely accepted as the promising alternatives for providing the satisfactory energy density and safety.However,its applications are still challenged by plenty of technical and scientific issues.In this contribution,the co-sintering temperature at 500℃is proved as a compromise method to fabricate the composite cathode with structural integrity and declined capacity fading of LiNi_(0.5)Co_(0.2)Mn_(0.3)O_(2)(NCM).On the other hand,it tends to form weaker grain boundary(GB)inside polycrystalline LLZO at inadequate sintering temperature for LLZO,which can induce the intergranular failure of SE during the growth of Li filament inside the unavoidable defect on the interface of SE.Therefore,increasing the strength of GB,refining the grain to 0.4μm,and precluding the interfacial defect are suggested to postpone the electro-chemo-mechanical failure of SE with weak GB.Moreover,the advanced sintering techniques to lower the co-sintering temperature for both NCM-LLZO composite cathode and LLZO SE can be posted out to realize the viability of state-of-the-art ASLMBs with higher energy density as well as the guaranteed safety. 展开更多
关键词 All-solid-state lithium metal battery LiNi_(0.5C)o_(0.2)Mn_(0.3)O_(2)-Li7La_(3)Zr_(2)O_(12)composite cathode CO-SINTERING Lithium metal anode Electro-chemo-mechanical failure
下载PDF
Preparation and characterization of La_(0.8)Sr_(0.04)Ca_(0.16)Co_(0.6)Fe_(0.4)O_(3-δ)-La_(0.9)Sr_(0.1)Ga_(0.8)Mg_(0.2)O_3 composite cathode thin film for SOFC by slurry spin coating 被引量:3
7
作者 孙红燕 马文会 +2 位作者 于洁 陈秀华 林航昇 《Journal of Rare Earths》 SCIE EI CAS CSCD 2010年第6期917-921,共5页
The La0.8Sr0.04Ca0.16Co0.6Fe0.4O3-δ (LSCCoF) and La0.9Sr0.1Ga0.8Mg0.2O3 (LSGM) powders were synthesized by glycine-nitrate combustion process and conventional solid-state reaction method, respectively. The LSCCoF-LSG... The La0.8Sr0.04Ca0.16Co0.6Fe0.4O3-δ (LSCCoF) and La0.9Sr0.1Ga0.8Mg0.2O3 (LSGM) powders were synthesized by glycine-nitrate combustion process and conventional solid-state reaction method, respectively. The LSCCoF-LSGM composite cathode material was successfully elaborated and deposited on dense pellets of the LSGM electrolyte by means of slurry spin-coating process. The cathode films with the best surface morphology and microstructure were obtained when the operating parameters fixed as follows: the content of ethyl cellulose which acted as pore former and binder is 10 wt.%, the content of terpineol which acted as modifier is 5 wt.%, the speed of rotation rate is 3200 r/min and the best post-deposition sintering temperature is 1000°C. 展开更多
关键词 composite cathode material thin film slurry spin crating ethyl cellulose rare earths
原文传递
Enhanced Cathode/Electrolyte Interface in Solid-state Li-metal Battery based on Garnet-type Electrolyte
8
作者 孙继杨 李忆秋 郭向欣 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2022年第2期149-154,共6页
Li/garnet/LiFePO_(4) solid-state battery was fabricated.The cathode contains LiFePO_(4),Ketjen black,poly(vinylidene fluoride):LiTFSI polymer as active material,electric conductor and Li-ion conducting binder,respecti... Li/garnet/LiFePO_(4) solid-state battery was fabricated.The cathode contains LiFePO_(4),Ketjen black,poly(vinylidene fluoride):LiTFSI polymer as active material,electric conductor and Li-ion conducting binder,respectively.Polyvinylpyrrolidone was added into the cathode to improve cathode/electrolyte interfacial performance.When combined with polyvinylpyrrolidone additive,poly(vinylidene fluoride):polyvinylpyrrol idone:LiTFSI blend forms,and the cathode/electrolyte interfacial resistance reduces from 10.7 kΩto 3.2 kΩ.The Li/garnet/LiFePO_(4) solid-state battery shows 80%capacity retention after 100 cycles at 30℃and 0.05 C.This study offers a general strategy to improve cathode/electrolyte interfacial performance and may enable the practical application of solid-state Li-metal batteries. 展开更多
关键词 solid-state Li-metal battery composite cathode interface ionic conductivity polyvinyl-pyrrolidone
下载PDF
Dry electrode technology for scalable and flexible high-energy sulfur cathodes in all-solid-state lithium-sulfur batteries 被引量:7
9
作者 Jiang-Kui Hu Hong Yuan +7 位作者 Shi-Jie Yang Yang Lu Shuo Sun Jia Liu Yu-Long Liao Shuai Li Chen-Zi Zhao Jia-Qi Huang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第8期612-618,I0017,共8页
All-solid-state lithium-sulfur batteries(ASSLSBs)employing sulfide solid electrolytes are one of the most promising next-generation energy storage systems due to their potential for higher energy density and safety.Ho... All-solid-state lithium-sulfur batteries(ASSLSBs)employing sulfide solid electrolytes are one of the most promising next-generation energy storage systems due to their potential for higher energy density and safety.However,scalable fabrication of sheet-type sulfur cathodes with high sulfur loading and excellent performances remains challenging.In this work,sheet-type freestanding sulfur cathodes with high sulfur loading were fabricated by dry electrode technology.The unique fibrous morphologies of polytetrafluoroethylene(PTFE)binders in dry electrodes not only provides excellent mechanical properties but also uncompromised ionic/electronic conductance.Even employed with thickened dry cathodes with high sulfur loading of 2 mg cm^(-2),ASSLSBs still exhibit outstanding rate performance and cycle stability.Moreover,the all-solid-state lithium-sulfur monolayer pouch cells(9.2 m Ah)were also demonstrated and exhibited excellent safety under a harsh test situation.This work verifies the potential of dry electrode technology in the scalable fabrication of thickened sulfur cathodes and will promote the practical applications of ASSLSBs. 展开更多
关键词 All-solid-state lithium-sulfur batteries Sulfide solid electrolytes Sheet-type electrodes composite sulfur cathode Dry electrode technology
下载PDF
Growing Intact Membrane by Tuning Carbon Down to Ultrasmall 0.37 nm Microporous Structure for Confining Dissolution of Polysulfides Toward High-Performance Sodium–Sulfur Batteries
10
作者 Chao Wu Juan Li +5 位作者 Lifei Liu Heng Zhang Zhuo Zou Wei Sun Fangyin Dai Changming Li 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2023年第4期147-156,共10页
Room temperature sodium–sulfur(Na–S)batteries are severely hampered by dissolution of polysulfides into electrolytes.Herein,a facile approach is used to tune a biomass-derived carbon down to an ultrasmall 0.37 nm mi... Room temperature sodium–sulfur(Na–S)batteries are severely hampered by dissolution of polysulfides into electrolytes.Herein,a facile approach is used to tune a biomass-derived carbon down to an ultrasmall 0.37 nm microporous structure for the first time as a cathode in sodium–sulfur batteries.This produced an intact uniform Na2S membrane to greatly confine the dissolution of polysulfides while realizing a direct solid phase conversion for complete reduction of sulfur to Na2S,which delivers a sulfur loading of 1 mg cm−2(50 wt.%),an excellent rate capacity(933 mAh g^(−1)@0.1 A g^(−1)and 410 mAh g^(−1)@2Ag^(−1)),long cycle performance(0.036%per cycle decay at 1 A g^(−1)after 1500 cycles),and a high energy density for 373 Wh kg^(−1)(0.1 A g^(−1))based on whole electrode weight(active sulfur loading+carbon),ranking the best among all reported plain carbon cathode-based room temperature sodium–sulfur batteries in terms of the cycle life and rate capacity.It is proposed that the solid Na2S produced in the ultrasmall pores(0.37 nm)can be squeezed out to grow an intact membrane on the electrode surface covering the outlet of the pores and greatly depressing the dissolution effect of polysulfides for the long cycle life.This work provides a green chemistry to recycle wastes for sustainable energies and sheds light on design of a unique pore structure to effectively block the dissolution of polysulfides for high-performance sodium–sulfur batteries. 展开更多
关键词 carbon-sulfur composite cathode MEMBRANE pore size sodium-sulfur batteries
下载PDF
Optimization on transport of charge carriers in cathode of sulfide electrolyte-based solid-state lithium-sulfur batteries
11
作者 Zengqi Zhang Yantao Wang +8 位作者 Tao Liu Gang Li Jun Ma Jianjun Zhang Pengxian Han Shanmu Dong Xuedong Yan Yue Tang Guanglei Cui 《Nano Research》 SCIE EI CSCD 2023年第6期8139-8158,共20页
Lithium-sulfur(Li-S)batteries are considered as promising candidates for novel energy storage technology that achieves energy density of 500 Wh·kg^(−1).However,poor cycle stability resulting from notorious shuttl... Lithium-sulfur(Li-S)batteries are considered as promising candidates for novel energy storage technology that achieves energy density of 500 Wh·kg^(−1).However,poor cycle stability resulting from notorious shuttle effect and the safety concerns deriving from flammability of ether-based electrolyte hinder the practical application of Li-S batteries.Because of low solubility to polysulfide,high ionic conductivity,and safety property,sulfide-based electrolytes can fundamentally address above issues.It is widely known that the effective transports of both electrons and ions are basic requirement for redox reaction of active materials in cathode.Thereby,construction of fast and stable ionic and electronic transport paths in cathode is especially pivotal for cycle stability of solid-state Li-S batteries(SSLSBs).In this review,we provide research progresses on facilitating transport of charge carriers in composite cathode of SSLSBs.From perspective of materials,intrinsically conductivity of electrolyte and carbon shows dramatic effect on migration of charge carriers in cathode of SSLSBs,thereby the conductive additives are summarized in the manuscript.Additionally,the charge transport in cathode of SSLSBs fully depends on the physical contact between active materials and conductive additives,therefore we summarized the strategies optimizing interfacial contact and reducing interfacial resistance.Finally,potential future research directions and prospects for SSLSBs with improved energy density and cycle performance are also proposed. 展开更多
关键词 sulfide electrolyte charge transport composite cathode solid-state lithium-sulfur battery
原文传递
NaV3O8/poly(3,4-ethylenedioxythiophene) composites as high-rate and long-lifespan cathode materials for reversible sodium storage 被引量:4
12
作者 Guo-Chun Ding Li-Min Zhu +5 位作者 Qi Yang Ling-Ling Xie Xiao-Yu Cao Yu-Ling Wang Jian-Ping Liu Xin-Li Yang 《Rare Metals》 SCIE EI CAS CSCD 2020年第8期865-873,共9页
Sodium-ion batteries have received a surge of interests for the alternatives to lithium-ion batteries due to their abundant reserves and low cost.The quest of reliable and high-performance cathode materials is crucial... Sodium-ion batteries have received a surge of interests for the alternatives to lithium-ion batteries due to their abundant reserves and low cost.The quest of reliable and high-performance cathode materials is crucial to future Na storage technologies.Herein,poly(3,4-ethylenedioxythiophene)(PEDOT)was successfully introduced to NaV3O8 via in situ oxidation polymerization,which can effectively enhance electron conductivity and ionic diffusion of NaV3O8 material.As a result,these NaV3O8@-PEDOT composites exhibit a significantly improved electrochemical performance including cycle stability and rate performance.In particular,NaV3O8@20 wt%PEDOT composite demonstrates better dispersibility and lower charge transfer resistance compared with bare NaV3O8,which delivers the first discharge capacity of 142 mAh-g-1and holds about 128.7 mAh·g-1 after 300 cycles at a current density of 120 mA·g-1.Even at a high current density of 300 mA·g-1,a high reversible capacity of 99.6 mAh·g-1 is revealed.All these consequences suggest that NaV3O8@20 wt%PEDOT composite may be a promising candidate to serve as a high-rate and long-lifespan cathode material for sodium-ion batteries. 展开更多
关键词 Sodium-ion batteries NaV3O8@PEDOT cathode composites In situ oxidation polymerization High-rate Long-lifespan
原文传递
Interface enhanced well-dispersed Co9S8 nanocrystals as an efficient polysulfide host in lithium–sulfur batteries 被引量:2
13
作者 Xue Liu Qiu He +7 位作者 Hong Yuan Chong Yan Yan Zhao Xu Xu Jia-Qi Huang Yu-Lun Chueh Qiang Zhang Liqiang Mai 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2020年第9期109-115,I0004,共8页
The high specific capacity and energy density of lithium-sulfur batteries have attracted strong considerations on their fundamental mechanism and energy applications.However,polysulfide shuttle is still the key issue ... The high specific capacity and energy density of lithium-sulfur batteries have attracted strong considerations on their fundamental mechanism and energy applications.However,polysulfide shuttle is still the key issue that impedes the development of Li-S batteries.Exploring nanocrystal hosts for polysulfide immobilization and conversion is a promising way.In this contribution,we have investigated well-dispersed Co9S8 nanocrystals grown on graphene oxide(GO)nanosheets with different degrees of dispersion as cathode host materials for Li-S batteries.The Co9S8-GO composite with 1 wt%GO(GCS1)has an average crystal size of 76 nm and shows the strongest adsorption capability toward lithium polysulfides.When used as the host material for the cathode of Li-S batteries,the GCS1-sulfur composite exhibits an initial specific capacity of^-1000 mAh g^-1 at 0.5 C and shows an average decay rate of 0.11%for 500 cycles.This work on the dispersion control of Co9S8 nanocrystals may inspire more investigations on well-dispersed nanocrystal based hosts for Li-S batteries. 展开更多
关键词 Metal sulfides composite sulfur cathode Cobalt sulfides Lithium-sulfur batteries ELECTROCATALYSIS
下载PDF
Beta-Cyclodextrin as Carbon Source for Synthesis of LiFePO_4/C with Improved Electrochemical Properties in Lithium-ion Batteries 被引量:2
14
作者 赖春艳 赵家昌 解晶莹 《Journal of Rare Earths》 SCIE EI CAS CSCD 2005年第S1期219-223,共5页
For beta-cyclodextrin (β-CD) may form complexes with metal ions during ballmilling process, it was used as a novel carbon source to synthesize LiFePO_4/C cathode composite in lithium-ion batteries via solid-state rea... For beta-cyclodextrin (β-CD) may form complexes with metal ions during ballmilling process, it was used as a novel carbon source to synthesize LiFePO_4/C cathode composite in lithium-ion batteries via solid-state reaction. This composite should has fine particle size and good electrochemical performances. The powders were characterized by XRD, SEM, TEM and galvanostatic charge-discharge. Compared with bare LiFePO_4 and LiFePO_4/C composite with glucose as carbon source by the same procedure and nearly the same content of carbon in the final cathode, the LiFePO_4/C composite with beta-cyclodextrin as carbon source shows much higher discharge specific capacity and more excellent rate performance. Ultrasonic dispersion between ballmilling and sinter process for 2 h was appropriate and useful for final LiFePO_4/C to reach higher discharge capacity. The SEI experiment was carried out to explore the effect of beta-cyclodextrin on the cathode materials, and the results indicate that coating with beta-cyclodextrin can improve the electrochemical performance of LiFePO_4 by decreasing the resistance of charge transfer (R_ ct) and improving the chemical diffusion coefficient (D_ Li). 展开更多
关键词 LiFePO_4/C cathode composite BETA-CYCLODEXTRIN solid-state reaction ultrasonic dispersing coating
下载PDF
Tailored Carrier Transport Path by Interpenetrating Networks in Cathode Composite for High Performance All‑Solid‑State Li‑SeS_(2) Batteries 被引量:2
15
作者 Lei Zhou Muhammad Khurram Tufail +5 位作者 Yaozu Liao Niaz Ahmad Peiwen Yu Tinglu Song Renjie Chen Wen Yang 《Advanced Fiber Materials》 SCIE CAS 2022年第3期487-502,共16页
All-solid-state Li-SeS_(2) batteries(ASSLSs)are more attractive than traditional liquid Li-ion batteries due to superior thermal stability and higher energy density.However,various factors limit the practical applicat... All-solid-state Li-SeS_(2) batteries(ASSLSs)are more attractive than traditional liquid Li-ion batteries due to superior thermal stability and higher energy density.However,various factors limit the practical application of all-solid-state Li-SeS_(2) batteries,such as the low ionic conductivity of the solid-state electrolyte and the poor kinetic property of the cathode composite,resulting in unsatisfactory rate capability.Here,we employed a traditional ball milling method to design a Li_(7)P_(2.9)W_(0.05)S_(10.85) glass–ceramic electrolyte with high conductivity of 2.0 mS cm^(−1) at room temperature.In order to improve the kinetic property,an interpenetrating network strategy is proposed for rational cathode composite design.Signifcantly,the disordered cathode composite with an interpenetrating network could promote electronic and ionic conduction and intimate contacts between the electrolyte–electrode particles.Moreover,the tortuosity factor of the carrier transport channel is considerably reduced in electrode architectures,leading to superior kinetic performance.Thus,assembled ASSLS exhibited higher capacity and better rate capability than its counterpart.This work demonstrates that an interpenetrating network is essential for improving carrier transport in cathode composite for high rate all-solid-state Li-SeS_(2) batteries. 展开更多
关键词 All-Solid-State Li-SeS_(2)batteries Tortuosity factors Carrier transport cathode composite Interpenetrating network
原文传递
Polyaniline-coated selenium/carbon composites encapsulated in graphene as efficient cathodes for Li-Se batteries 被引量:5
16
作者 Biwu Wang Jingjing Zhang +4 位作者 Zhigang Xia Meiqiang Fan Chunju Lv Guanglei Tian Xiaona Li 《Nano Research》 SCIE EI CAS CSCD 2018年第5期2460-2469,共10页
In this work, we developed a polyaniline (PANI)-coated selenium/carbon nanocomposite encapsulated in graphene sheets (PANI@Se/C-G), with excellent performance in Li-Se batteries. The PANI@Se/C-G nanostructure pres... In this work, we developed a polyaniline (PANI)-coated selenium/carbon nanocomposite encapsulated in graphene sheets (PANI@Se/C-G), with excellent performance in Li-Se batteries. The PANI@Se/C-G nanostructure presents attractive properties as cathode of Li-Se batteries, with a high specific capacity of 588.7 mAh·g^-1 at a 0.2C (1C = 675 mA·g^-1) rate after 200 cycles. Even at a high rate of 2C, a high capacity of 528.6 mAh·g^-1 is obtained after 500 cycles. The excellent cycle stability and rate performance of the PANI@Se/C-G composite can be attributed to the synergistic combination of carbon black (as the conductive matrix for Se) and the double conductive layer comprising the uniform PANI shell and the graphene sheets, which effectively improves the utilization of selenium and significantly enhances the electronic conductivity of the whole electrode. 展开更多
关键词 lithium-selenium batteries selenium/carbon composites polyaniline coating graphene efficient cathodes
原文传递
26-electrons redox-active polyoxovanadate clusters for aqueous zincion batteries
17
作者 Yimin Xing Wen Yan +3 位作者 Haiyang Wu Peng Huang Chao Wang Chao Lai 《Nano Research》 SCIE EI CSCD 2024年第5期4047-4054,共8页
Aqueous zinc-ion batteries(ZIBs)are attaining increasing attention for their high safety and low cost.Despite significant progresses in realizing high-performance cathode material for ZIBs,simultaneously endowing them... Aqueous zinc-ion batteries(ZIBs)are attaining increasing attention for their high safety and low cost.Despite significant progresses in realizing high-performance cathode material for ZIBs,simultaneously endowing them with high capacity and fast-charging capability,the long-term cycling stability remains a major unsolved challenge.In this work,a polyoxovanadate cluster of(NH_(4))_(8)[V_(19)O_(41)(OH)_(9)]·11H_(2)O(NOV)is defined as a cathode material for ZIBs that contains mixed-valence vanadium sites(V^(4+)and V^(5+)).A maximum of 26 electrons can be accommodated in one[V_(19)O_(41)(OH)_(9)]^(8-){V_(19)O_(50)}cluster,contributing to the high theoretical specific capacity of 328 mA·h·g^(-1).The Ti_(3)C_(2)T_(x) MXene nanosheets are incorporated into NOV with the help of ionic liquid(IL)linkers to restrain the dissolution of vanadium species and facilitate electron transport across the electrode.The interfacial bonding,anion exchange,and electrostatic interactions among NOV and MXene are provided by IL liquid.The nanohybrid of NOV-IL-MXene endows excellent contact between MXene and NOV,thereby enhanced charge transfer is observed at interface.Subsequently,the as-synthesized NOV-IL-MXene cathodes exhibit high discharge capacity of 413 mA·h·g^(-1) at 0.2 A·g^(-1) even at high mass loading of 5.2 mg·cm^(-2),remarkable rate performance of 182 mA·h·g^(-1) at 10 A·g^(-1),and impressive cycling stability of 94%capacity retention after 2000 cycles.This work opens up new opportunities to develop advanced polyoxovanadate hybrid cathodes for low-cost and high-performance aqueous ZIBs. 展开更多
关键词 POLYOXOVANADATE MXene composite materials cathodes zinc-ion batteries
原文传递
Review of nanostructured current collectors in lithium-sulfur batteries 被引量:13
18
作者 Long Kong Hong-Jie Peng +1 位作者 Jia-Qi Huang Qiang Zhang 《Nano Research》 SCIE EI CAS CSCD 2017年第12期4027-4054,共28页
Lithium-sulfur (Li-S) batteries are receiving increasing attention because of their high theoretical energy density and the natural abundance of S. However, their practical applications are impeded by the low areal ... Lithium-sulfur (Li-S) batteries are receiving increasing attention because of their high theoretical energy density and the natural abundance of S. However, their practical applications are impeded by the low areal S loading in the cathode and the fatal Li dendrites in the anode of the Li-S cells, which yield an inferior practical energy density and introduce safety concerns, respectively. In this review, we focus on an emerging approach--the nanostructured current collector--to overcome these two critical challenges for Li-S batteries. We describe the general attributes of nanostructured current collectors and examine how these attributes enhance the S utilization with a high S loading and suppress the Li dendrites by regulating the Li-deposition behavior. We present various assembly blocks that have been used for the construction of advanced nanostructured current collectors to build better S cathodes and Li anodes. Finally, we investigate the current challenges and possible solutions regarding the practical applications of nanostructured current collectors in Li-S batteries. 展开更多
关键词 Li-S batteries nanostructured currentcollectors Li metal anode graphene C nanotubes composite cathode
原文传递
Dual-function redox mediator enhanced lithium-oxygen battery based on polymer electrolyte
19
作者 Muhammad Mushtaq Xianwei Guo +4 位作者 Zihe Zhang Zhiyuan Lin Xiaolong Li Zhangquan Peng Haijun Yu 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2022年第18期199-206,共8页
The polymer electrolyte based lithium-oxygen battery has showed higher safety than that of organic liquid electrolyte.However,the energy efficiency and cycling stability are still the challenges for the practical appl... The polymer electrolyte based lithium-oxygen battery has showed higher safety than that of organic liquid electrolyte.However,the energy efficiency and cycling stability are still the challenges for the practical application of lithium-oxygen battery.Herein,the 1,4 para benzoquinone has been demonstrated as dual-function redox mediator for promoting both oxygen reduction and oxygen evolution reactions of lithium-oxygen battery with polymer electrolyte,which have been confirmed by the Cyclic Voltammetry and discharge/charge test of battery under O_(2) gas,as well as the theoretical calculations.Furthermore,the composite cathode that in-situ constructed by polymerizing electrolyte precursors with redox me-diator can be beneficial for the electrochemical reactions.Combing composite cathode and lithium ions source,the polymer electrolyte based lithium-oxygen batteries can operate for long lifetime with low charge potentials and good rate performances.Thus,this work has highlighted the promising implementation of lithium-oxygen battery based on polymer electrolyte,in which the dual-function redox mediator are employed for both discharge and recharge processes. 展开更多
关键词 Polymer electrolyte Lithium-oxygen battery Dual-function redox mediator composite cathode Interfacial stability
原文传递
A review of solid electrolytes for safe lithium-sulfur batteries 被引量:16
20
作者 Ying-Zhi Sun Jia-Qi Huang +1 位作者 Chen-Zi Zhao Qiang Zhang 《Science China Chemistry》 SCIE EI CAS CSCD 2017年第12期1508-1526,共19页
Due to the high specific capacity, low cost, and environmental friendliness, lithium-sulfur batteries hold great potential to become the mainstay of next-generation energy storage system. Regarding the composition of ... Due to the high specific capacity, low cost, and environmental friendliness, lithium-sulfur batteries hold great potential to become the mainstay of next-generation energy storage system. Regarding the composition of sulfur/carbon in cathode, flammable organic liquid electrolyte, and lithium metal anode, great concerns about the safety have been raised. Hence solid-electrolyte-based lithium-sulfur batteries, as one alternative route for safe batteries, are highly interested. This review highlights the recent research progress of lithium-sulfur batteries with solid electrolytes. Both sulfide solid electrolytes and oxide solid electrolytes are included.The sulfide solid electrolytes are mainly employed in all-solid-state lithium-sulfur batteries, while the oxide solid electrolytes are applied in hybrid electrolyte for lithium-sulfur batteries. The challenges and perspectives in this field are also featured on the basis of its current progress. 展开更多
关键词 lithium-sulfur battery inorganic solid electrolyte ionic conductivity lithium metal anode composite sulfur cathode high energy density energy storage system
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部