An aluminum-based in-situ composites reinforced with Mg2Si and Si particles were produced by centrifugal casting A1-20Si-5Mg alloy. The microstructure of the composites was examined, and the effects of temperature on ...An aluminum-based in-situ composites reinforced with Mg2Si and Si particles were produced by centrifugal casting A1-20Si-5Mg alloy. The microstructure of the composites was examined, and the effects of temperature on fracture behavior of the composite were investigated. The results show that the average fraction of primary Si and Mg2Si particles in the composites is as high as 38%, and ultimate tensile strengths (UTS) of the composites first increase then decrease with the increase of test temperature. Microstructures of broken specimens show that both the particle fracture and the interface debonding affect the fracture behavior of the composites, and the interface debonding becomes the dominant fracture mechanism with increasing test temperature. Comparative results indicate that rich particles in the composites and excellent interface strength play great roles in enhancing tensile property by preventing the movement of dislocations.展开更多
The frequent occurrence of safety accidents during the calendering process is caused by the flammable and explosive properties of composite modified double-base(CMDB)propellant.Optimization of process parameters with ...The frequent occurrence of safety accidents during the calendering process is caused by the flammable and explosive properties of composite modified double-base(CMDB)propellant.Optimization of process parameters with the aid of fluid simulation technology could effectively ensure the safety of the calendering process.To improve the accuracy of the simulation results,material parameters and model structure were corrected based on actual conditions,and adaptive grid technology was applied in the local mesh refinement.In addition,the rheological behavior,motion trajectories and heat transfer mechanisms of CMDB propellant slurry were studied with different gaps,rotational rates and temperatures of two rollers.The results indicated that the refined mesh could significantly improve the contour clarity of boundaries and simulate the characteristics of CMDB propellant slurry reflux movement caused by the convergent flow near the outlet.Compared with the gap,the increased rotational rate of roller could promote the reflux movement and intensify the shear flow of slurry inside the flow region by viscous shear dragging.Meanwhile,under the synergistic effect of contact heat transfer as well as convective heat exchange,heat accumulated near the outlet and diffused along the reflux movement,which led to the countercurrent heat dissipation behavior of CMDB propellant slurry.The plasticizing mechanism of slurry and the safety of calendering under different conditions were explored,which provided theoretical guidance and reference data for the optimization of calendering process conditions.Based on the simulation results,the safety of the CMDB propellant calendering process could be significantly improved with a few tests conducted during a short research and development cycle.展开更多
Transient liquid phase (TLP) bonded aluminium based metal matrix composite (MMC) joints can be classified into three distinct regions, i.e. the particulate segregation region, the denuded particulate region and the ...Transient liquid phase (TLP) bonded aluminium based metal matrix composite (MMC) joints can be classified into three distinct regions, i.e. the particulate segregation region, the denuded particulate region and the base material region. The microstructure of the particulate segregation region consists of alumina particulate and Al alloy matrix with the Al 2Cu and MgAl 2O 4. It contains more and smaller alumina particulates compared with the base material region. The TLP bonded joints have the tensile strength of 150 MPa ~200 MPa and the shear strength of 70 MPa ~100 MPa . With increasing tensile stress, cracks initiate in the particulate segregation region, especially in the particulate/particulate interface and the particulate/matrix interface, and propagate along particulate/matrix interface, througth thin matrix metal and by linking up the close cracks. The particulate segregation region is the weakest during tensile testing and shear testing due to obviously increased proportion of weak bonds (particulate particulate bond and particulate matrix bond).展开更多
Interactions between different components in α-starch based composite binder for green sand mould/core were investigated by using XRD, IR spectra, 1H NMR spectra and SEM. Several adhesive hardening structures and the...Interactions between different components in α-starch based composite binder for green sand mould/core were investigated by using XRD, IR spectra, 1H NMR spectra and SEM. Several adhesive hardening structures and theories of the binder at room temperature were proposed according to the interactions between various compositions. Thus, the reasons for the binder to have excellent combination properties and unique adhesive bonding and self-curing characteristics were explained by these theories successfully. And the theories are of great directive importance to design and development of composite binder for green sand mould/core.展开更多
The enhancement of interface bonding between cement and polymerand the structural reticula- tion of the water-soluble polymer areproposed to minimize the shortening of the mechanical properties ofmacro-de- fect-free(M...The enhancement of interface bonding between cement and polymerand the structural reticula- tion of the water-soluble polymer areproposed to minimize the shortening of the mechanical properties ofmacro-de- fect-free(MDF)cement based composites at high relativehumidity. The MDF composites incorporated with vari- ouscross-coupling agents studied experimentally. The results show thatthe MDF composites modified with small amounts of cross-couplingagent had raised mechanical properties, but it is more important thatthe modified MDF composites had a significant increase in waterresistance compared to the original one.展开更多
In spray atomization and codeposition, a molten stream of metal is disintegrated into a fine dispersion of droplets by high velocity gas jets. The resulting semi-solidified droplets are directed towards a substrate wh...In spray atomization and codeposition, a molten stream of metal is disintegrated into a fine dispersion of droplets by high velocity gas jets. The resulting semi-solidified droplets are directed towards a substrate where they impact and collect as rapidly solidified splats. Relatively high rates of solidification are achieved as a result of the thinness of the splats and the rapid heat extraction during flight and upon impacting with the substrate. The processing method uses codeposition of the metallic semi-solidified droplets (metallic matrix) with the injected reinforcement ceramic particles. In the present paper, the microstructures, mechanical properties, interfacial properties, thermal stability and aging behaviour of spray atomized and codeposited Al-Li-X MMC's (injected X=SiC, Al2O3) are reported and correlated to the processing conditions.展开更多
A combined structure with the unit cell consisting of four sub-units with 90° rotation in turn is designed. Each of sub-units is composed of two gold rods in transverse arrangement and one gold rod in longitudina...A combined structure with the unit cell consisting of four sub-units with 90° rotation in turn is designed. Each of sub-units is composed of two gold rods in transverse arrangement and one gold rod in longitudinal arrangement. Simulating electromagnetic responses of the structure, we verify that the structure exhibits the double Fano resonances, which originate from the coupling between magnetic quadrupoles and electric dipoles and the coupling between electric quadrupoles and electric dipoles. Simulation results also demonstrate that the structure is polarization-insensitive and shows an analogue of electromagnetically induced transparency at the two Fano resonances. Such a plasmonic structure has potential applications in photoelectric elements.展开更多
Magnesium powders were mechanically alloyed with SiO2 powder particles having different particle sizes using nigh-energy ball milling techniques under Ar atmosphere for 1 h. The powders were consolidated with cold pre...Magnesium powders were mechanically alloyed with SiO2 powder particles having different particle sizes using nigh-energy ball milling techniques under Ar atmosphere for 1 h. The powders were consolidated with cold pressing under 560 MPa. They were then sintered at 550℃ for 45 min under Ar atmosphere. The composites obtained on the Mg-SiO2 system were investigated using the Archimedes principle, a differential scanning calorimeter, X-ray diffraction, optic microscopy, and scanning electron microscopy. For the mechanically alloyed powders, the solid-state reaction of the synthesis of Mg2Si and MgO progressed further during sintering of the materials. The results showed that the strengthening mechanisms were dependent on dispersion hardening of fine Mg2Si and MgO particulates dispersed homogeneously in the matrix. Mg-展开更多
The longitudinal wave propagating in one-dimensional periodic piezoelectric composite rod with inter-coupling between different piezoelectric segments is investigated. The analytical formulae for such a structure are ...The longitudinal wave propagating in one-dimensional periodic piezoelectric composite rod with inter-coupling between different piezoelectric segments is investigated. The analytical formulae for such a structure are shown and the dispersion relation is calculated. The results show that, by introducing the inter-coupling between the different piezoelectric segments, which is accomplished by serially connecting every n piezoelectric segment into supercells, some tunable Bragg band gaps can accordingly be opened in the low frequency region. The investigation could provide a new guideline for the tunable phononic crystal under passive control.展开更多
The morphology. orientation relationship and stability of TiC/γ interface in Fe-Cr-Ni base composite synthesized with a liquid state in-situ process have been studied. The TiC/γ interface in as-cast sample is of coh...The morphology. orientation relationship and stability of TiC/γ interface in Fe-Cr-Ni base composite synthesized with a liquid state in-situ process have been studied. The TiC/γ interface in as-cast sample is of coherent feature. Its orientation relationship is (020)γ//(220)TiC, [001]γ||[001]TiC. During the aging at 1473 K, the TiC/γ interface may dissolve in matrix and lamellar M23C6 compound may precipitate from γ-matrix.展开更多
A new PVK-based photorefractive polymer composite sensitized by C60 and doped with a higher content of EO chromophore was prepared. The high optical quality thin-film was formed between two ITOcovered glass electrode...A new PVK-based photorefractive polymer composite sensitized by C60 and doped with a higher content of EO chromophore was prepared. The high optical quality thin-film was formed between two ITOcovered glass electrodes. Two-beam-coupling (2BC) experiment was performed by using a He-Ne laser (at wavelength 632.8nm), and an obvious photorefractive performance was observed. The dependence of two-beamcoupling gain coefficient on the applied poling dc electric field was measured.展开更多
1 Scope This standard specifies the definition, classification, technical requirements, test methods, inspection rules, packing, marking, transportation and quality certificate of corundum block containing plastic ph...1 Scope This standard specifies the definition, classification, technical requirements, test methods, inspection rules, packing, marking, transportation and quality certificate of corundum block containing plastic phase.展开更多
This study examines the microstructure,mechanical properties(with a focus on room-temperature toughness),and oxidation resistance of Ho-doped NbDSi based in-situ composites.The base alloy consists of the coarse primar...This study examines the microstructure,mechanical properties(with a focus on room-temperature toughness),and oxidation resistance of Ho-doped NbDSi based in-situ composites.The base alloy consists of the coarse primary Nb_(5)Si_(3)phase and the Nb_(5)Si_(3)+Nbss(Nb solid solution)eutectic cells.Ho doping influences the solidification path.When the Ho doping is higher than0.2 at%,the alloys transform into eutectic alloys.Ho can be solid-solved in trace amounts in the Nbss phase.However,most of Ho forms a stable Ho oxide phase,which alleviates oxygen contamination problem to some extent.Moreover,the interface separation between Ho oxide and other phases reduces the plastic deformation constraint.Thus,with 0.4 at%Ho doping,the K_(Q)value is18.03 MPa·m^(1/2),which is 31.1%higher than that of the base alloy.The strength of the Ho-doped alloys does not deteriorate with an increase in toughness.However,the large network-like Ho_(2)O_(3)in the 0.8Ho alloy causes a decrease in toughness and strength.In addition,the Ho oxide phase effectively blocks the inward oxygen intrusion.With 0.8 at%Ho doping,the oxidation mass gain per unit area is 10.16 mg·cm^(2),which is 39.7%lower than that of the base alloy.展开更多
Polypropylene fibres and three sizes of steel fibres reinforced concrete are discussed. The total fibres content ranges from 0 4%-0 95% by volume of concrete. A four point bending test is adopted on the notched pris...Polypropylene fibres and three sizes of steel fibres reinforced concrete are discussed. The total fibres content ranges from 0 4%-0 95% by volume of concrete. A four point bending test is adopted on the notched prisms with the size of 100?mm×100?mm×500?mm to investigate the effect of hybrid fibres on crack arresting. The research results show that there is a positive synergy effect between large steel fibres and polypropylene fibres on the load bearing capacity in the small displacement range. But this synergy effect disappears in the large displacement range. The large and strong steel fibre is better than soft polypropylene fibre and small steel fibre in the aspect of energy absorption capacity in the large displacement range. The static usage limitation for the hybrid fibres concrete with “wide peak' or “multi peaks' load CMOD pattern should be carefully selected. The ultimate load bearing capacity and the crack width or CMOD at this load level should be jointly considered.展开更多
The booming development of DIW technology present an unprecedented prospect in energetic materials field and has attracted great interest due to its relative simplicity and high flexibility of manufacturing.Herein,a n...The booming development of DIW technology present an unprecedented prospect in energetic materials field and has attracted great interest due to its relative simplicity and high flexibility of manufacturing.Herein,a novel CL-20 based explosive ink formulation have been developed successfully for MEMS initiation systems via DIW technology.We designed PVA/GAP into an oil-in-water(O/W)emulsion,in the way that the aqueous solution of PVA as water phase,the ethyl acetate solution of GAP as oil phase,the combination of Tween 80 and SDS as emulsifier,BPS as a curing agent of GAP.The ideal formulation with good shear-thinning rheology properties and clear gel point was prepared using only 10 wt%emulsion.The dual-cured network formed during the curing process made the printed sample have good mechanical properties.The printed samples had satisfactory molding effect without cracks or fractures,the crystal form of CL-20 not changed and the thermal stability have improved.Deposition of explosive inks via DIW in micro-scale grooves had excellent detonation performances,which critical detonation size was 1×0.045 mm,detonation velocity was 7129 m/s and when the corner reaching 150°can still detonated stably.This study may open new avenues for developing binder systems in explosive ink formulations.展开更多
Ti-Fe-x TiC(x=0, 3, 6, 9, wt.%) composites were fabricated through low temperature ball milling of Ti, Fe and TiC powders, followed by spark plasma sintering. The results show that β-Ti, β-Ti-Fe, η-Ti4 Fe2 O0.4 and...Ti-Fe-x TiC(x=0, 3, 6, 9, wt.%) composites were fabricated through low temperature ball milling of Ti, Fe and TiC powders, followed by spark plasma sintering. The results show that β-Ti, β-Ti-Fe, η-Ti4 Fe2 O0.4 and TiC particles can be found in the composites. The microstructure can be obviously refined with increasing the content of TiC particles. The coefficient of friction(COF) decreases and the hardness increases with increasing the content of TiC particles. The adhesive wear is the dominant wear mechanism of all the Ti-Fe-x TiC composites. The Ti-Fe-6 TiC composite shows the best wear resistance, owing to the small size and high content of TiC particle as well as relatively fine microstructure. The wear rate of the Ti-Fe-6 TiC composite is as low as 1.869× 10-5 mm3/(N·m) and the COF is only 0.64. Therefore, TiC particle reinforced Ti-Fe based composites may be utilized as potential wear resistant materials.展开更多
This paper presents the applications of digital image correlation technique to the mesoscopic damage and fracture study of some granular based composite materials including steel- fiber reinforced concrete,sandstone a...This paper presents the applications of digital image correlation technique to the mesoscopic damage and fracture study of some granular based composite materials including steel- fiber reinforced concrete,sandstone and crystal-polymer composite.The deformation fields of the composite materials resulted from stress localization were obtained by the correlation computation of the surface images with loading steps and thus the related damage prediction and fracture parameters were evaluated.The correlation searching could be performed either directly based on the gray levels of the digital images or from the wavelet transform(WT)coefficients of the transform spectrum.The latter was developed by the authors and showed higher resolution and sensitivity to the singularity detection. Because the displacement components came from the rough surfaces of the composite materials without any coats of gratings or fringes of optical interferometry,both surface profiles and the deformation fields of the composites were visualized which was helpful to compare each other to analyze the damage of those heterogeneous materials.展开更多
With an ever increasing energy demand and environmental issues, many state-of-the-art nanostructured electrode materials have been developed for energy storage devices and they include batteries, supercapacitors and f...With an ever increasing energy demand and environmental issues, many state-of-the-art nanostructured electrode materials have been developed for energy storage devices and they include batteries, supercapacitors and fuel cells. Among these electrode materials, L-TMD (layered transition metal dichalcogenide) nanosheets (especially, S (sulfur) and Se (selenium) based dichaleogenides) have received a lot of attention due to their intriguing layered structure for enhanced electrochemical properties. L-TMD composites have recently been investigated not only as a main charge storage specie but also, as a substrate to hold the active specie. This review highlights the recent advancements in L-TMD composites with 0D (0-dimensional), 1 D, 2D, 3D and various forms of carbon structures and their potential applications in LIB (lithium ion battery) and SIB (sodium ion battery).展开更多
B 4 C p /Mg-8Li-1Zn and B 4 C p /Mg-8Li-1Al-1Y composites were prepared with hot-extrusion solid-state composite processing. The microstructures and mechanical properties of the composites were studied. With the optim...B 4 C p /Mg-8Li-1Zn and B 4 C p /Mg-8Li-1Al-1Y composites were prepared with hot-extrusion solid-state composite processing. The microstructures and mechanical properties of the composites were studied. With the optimized parameters, the deformation effects and the migration of α phase are improved, and the amount and size of foil gaps are decreased. The bonding force between foils is improved, and the oxidation of foils is lowered. The results of tensile test show that the strengths of the B 4 C p /Mg-8Li-1Zn and B 4 C p /Mg-8Li-1Al-1Y composites are increased obviously after hot-extrusion solid-state composite processing (238 MPa and 257.23 MPa, respectively). The specific strength of B 4 C p /Mg-8Li-1Al-1Y composite is the highest (169.23×10 3 cm).展开更多
基金Project(51174244) supported by the National Natural Science Foundation of ChinaProject(CDJZR11130005) supported by the Fundamental Research Funds for the Central Universities,China
文摘An aluminum-based in-situ composites reinforced with Mg2Si and Si particles were produced by centrifugal casting A1-20Si-5Mg alloy. The microstructure of the composites was examined, and the effects of temperature on fracture behavior of the composite were investigated. The results show that the average fraction of primary Si and Mg2Si particles in the composites is as high as 38%, and ultimate tensile strengths (UTS) of the composites first increase then decrease with the increase of test temperature. Microstructures of broken specimens show that both the particle fracture and the interface debonding affect the fracture behavior of the composites, and the interface debonding becomes the dominant fracture mechanism with increasing test temperature. Comparative results indicate that rich particles in the composites and excellent interface strength play great roles in enhancing tensile property by preventing the movement of dislocations.
文摘The frequent occurrence of safety accidents during the calendering process is caused by the flammable and explosive properties of composite modified double-base(CMDB)propellant.Optimization of process parameters with the aid of fluid simulation technology could effectively ensure the safety of the calendering process.To improve the accuracy of the simulation results,material parameters and model structure were corrected based on actual conditions,and adaptive grid technology was applied in the local mesh refinement.In addition,the rheological behavior,motion trajectories and heat transfer mechanisms of CMDB propellant slurry were studied with different gaps,rotational rates and temperatures of two rollers.The results indicated that the refined mesh could significantly improve the contour clarity of boundaries and simulate the characteristics of CMDB propellant slurry reflux movement caused by the convergent flow near the outlet.Compared with the gap,the increased rotational rate of roller could promote the reflux movement and intensify the shear flow of slurry inside the flow region by viscous shear dragging.Meanwhile,under the synergistic effect of contact heat transfer as well as convective heat exchange,heat accumulated near the outlet and diffused along the reflux movement,which led to the countercurrent heat dissipation behavior of CMDB propellant slurry.The plasticizing mechanism of slurry and the safety of calendering under different conditions were explored,which provided theoretical guidance and reference data for the optimization of calendering process conditions.Based on the simulation results,the safety of the CMDB propellant calendering process could be significantly improved with a few tests conducted during a short research and development cycle.
文摘Transient liquid phase (TLP) bonded aluminium based metal matrix composite (MMC) joints can be classified into three distinct regions, i.e. the particulate segregation region, the denuded particulate region and the base material region. The microstructure of the particulate segregation region consists of alumina particulate and Al alloy matrix with the Al 2Cu and MgAl 2O 4. It contains more and smaller alumina particulates compared with the base material region. The TLP bonded joints have the tensile strength of 150 MPa ~200 MPa and the shear strength of 70 MPa ~100 MPa . With increasing tensile stress, cracks initiate in the particulate segregation region, especially in the particulate/particulate interface and the particulate/matrix interface, and propagate along particulate/matrix interface, througth thin matrix metal and by linking up the close cracks. The particulate segregation region is the weakest during tensile testing and shear testing due to obviously increased proportion of weak bonds (particulate particulate bond and particulate matrix bond).
基金This work was supported by the China Postdoctoral Science Foundation(China Fund[1998]6)that was entitled“Synthesis of Modified Starch Binder and Its Application in Foundry”.Authors would like to thank academician Jinzong YANG and lecturer Hua ZHANG for the kind analyses and discussions.
文摘Interactions between different components in α-starch based composite binder for green sand mould/core were investigated by using XRD, IR spectra, 1H NMR spectra and SEM. Several adhesive hardening structures and theories of the binder at room temperature were proposed according to the interactions between various compositions. Thus, the reasons for the binder to have excellent combination properties and unique adhesive bonding and self-curing characteristics were explained by these theories successfully. And the theories are of great directive importance to design and development of composite binder for green sand mould/core.
文摘The enhancement of interface bonding between cement and polymerand the structural reticula- tion of the water-soluble polymer areproposed to minimize the shortening of the mechanical properties ofmacro-de- fect-free(MDF)cement based composites at high relativehumidity. The MDF composites incorporated with vari- ouscross-coupling agents studied experimentally. The results show thatthe MDF composites modified with small amounts of cross-couplingagent had raised mechanical properties, but it is more important thatthe modified MDF composites had a significant increase in waterresistance compared to the original one.
文摘In spray atomization and codeposition, a molten stream of metal is disintegrated into a fine dispersion of droplets by high velocity gas jets. The resulting semi-solidified droplets are directed towards a substrate where they impact and collect as rapidly solidified splats. Relatively high rates of solidification are achieved as a result of the thinness of the splats and the rapid heat extraction during flight and upon impacting with the substrate. The processing method uses codeposition of the metallic semi-solidified droplets (metallic matrix) with the injected reinforcement ceramic particles. In the present paper, the microstructures, mechanical properties, interfacial properties, thermal stability and aging behaviour of spray atomized and codeposited Al-Li-X MMC's (injected X=SiC, Al2O3) are reported and correlated to the processing conditions.
基金Supported by the National Innovative Projects for College Students under Grant No 201310320025the National Natural Science Foundation of China under Grant Nos 61401182 and 61372057the Priority Academic Program Development of Jiangsu Higher Education Institutions of China
文摘A combined structure with the unit cell consisting of four sub-units with 90° rotation in turn is designed. Each of sub-units is composed of two gold rods in transverse arrangement and one gold rod in longitudinal arrangement. Simulating electromagnetic responses of the structure, we verify that the structure exhibits the double Fano resonances, which originate from the coupling between magnetic quadrupoles and electric dipoles and the coupling between electric quadrupoles and electric dipoles. Simulation results also demonstrate that the structure is polarization-insensitive and shows an analogue of electromagnetically induced transparency at the two Fano resonances. Such a plasmonic structure has potential applications in photoelectric elements.
文摘Magnesium powders were mechanically alloyed with SiO2 powder particles having different particle sizes using nigh-energy ball milling techniques under Ar atmosphere for 1 h. The powders were consolidated with cold pressing under 560 MPa. They were then sintered at 550℃ for 45 min under Ar atmosphere. The composites obtained on the Mg-SiO2 system were investigated using the Archimedes principle, a differential scanning calorimeter, X-ray diffraction, optic microscopy, and scanning electron microscopy. For the mechanically alloyed powders, the solid-state reaction of the synthesis of Mg2Si and MgO progressed further during sintering of the materials. The results showed that the strengthening mechanisms were dependent on dispersion hardening of fine Mg2Si and MgO particulates dispersed homogeneously in the matrix. Mg-
基金Supported by the National Natural Science Foundation of China under Grant No 11274121
文摘The longitudinal wave propagating in one-dimensional periodic piezoelectric composite rod with inter-coupling between different piezoelectric segments is investigated. The analytical formulae for such a structure are shown and the dispersion relation is calculated. The results show that, by introducing the inter-coupling between the different piezoelectric segments, which is accomplished by serially connecting every n piezoelectric segment into supercells, some tunable Bragg band gaps can accordingly be opened in the low frequency region. The investigation could provide a new guideline for the tunable phononic crystal under passive control.
文摘The morphology. orientation relationship and stability of TiC/γ interface in Fe-Cr-Ni base composite synthesized with a liquid state in-situ process have been studied. The TiC/γ interface in as-cast sample is of coherent feature. Its orientation relationship is (020)γ//(220)TiC, [001]γ||[001]TiC. During the aging at 1473 K, the TiC/γ interface may dissolve in matrix and lamellar M23C6 compound may precipitate from γ-matrix.
文摘A new PVK-based photorefractive polymer composite sensitized by C60 and doped with a higher content of EO chromophore was prepared. The high optical quality thin-film was formed between two ITOcovered glass electrodes. Two-beam-coupling (2BC) experiment was performed by using a He-Ne laser (at wavelength 632.8nm), and an obvious photorefractive performance was observed. The dependence of two-beamcoupling gain coefficient on the applied poling dc electric field was measured.
文摘1 Scope This standard specifies the definition, classification, technical requirements, test methods, inspection rules, packing, marking, transportation and quality certificate of corundum block containing plastic phase.
基金supported by the National Natural Science Foundation of China(Nos.51825401 and 52374384)the Fundamental Research Funds for the Central Universities(No.2023FRFK06014).
文摘This study examines the microstructure,mechanical properties(with a focus on room-temperature toughness),and oxidation resistance of Ho-doped NbDSi based in-situ composites.The base alloy consists of the coarse primary Nb_(5)Si_(3)phase and the Nb_(5)Si_(3)+Nbss(Nb solid solution)eutectic cells.Ho doping influences the solidification path.When the Ho doping is higher than0.2 at%,the alloys transform into eutectic alloys.Ho can be solid-solved in trace amounts in the Nbss phase.However,most of Ho forms a stable Ho oxide phase,which alleviates oxygen contamination problem to some extent.Moreover,the interface separation between Ho oxide and other phases reduces the plastic deformation constraint.Thus,with 0.4 at%Ho doping,the K_(Q)value is18.03 MPa·m^(1/2),which is 31.1%higher than that of the base alloy.The strength of the Ho-doped alloys does not deteriorate with an increase in toughness.However,the large network-like Ho_(2)O_(3)in the 0.8Ho alloy causes a decrease in toughness and strength.In addition,the Ho oxide phase effectively blocks the inward oxygen intrusion.With 0.8 at%Ho doping,the oxidation mass gain per unit area is 10.16 mg·cm^(2),which is 39.7%lower than that of the base alloy.
文摘Polypropylene fibres and three sizes of steel fibres reinforced concrete are discussed. The total fibres content ranges from 0 4%-0 95% by volume of concrete. A four point bending test is adopted on the notched prisms with the size of 100?mm×100?mm×500?mm to investigate the effect of hybrid fibres on crack arresting. The research results show that there is a positive synergy effect between large steel fibres and polypropylene fibres on the load bearing capacity in the small displacement range. But this synergy effect disappears in the large displacement range. The large and strong steel fibre is better than soft polypropylene fibre and small steel fibre in the aspect of energy absorption capacity in the large displacement range. The static usage limitation for the hybrid fibres concrete with “wide peak' or “multi peaks' load CMOD pattern should be carefully selected. The ultimate load bearing capacity and the crack width or CMOD at this load level should be jointly considered.
基金This work was supported by the Graduate Education Innovation Project of Shanxi Province(2020SY401)No.55 Research Institute of China North Industries Group Corporation Open Innovation Fund(WDZC2020JJ017).
文摘The booming development of DIW technology present an unprecedented prospect in energetic materials field and has attracted great interest due to its relative simplicity and high flexibility of manufacturing.Herein,a novel CL-20 based explosive ink formulation have been developed successfully for MEMS initiation systems via DIW technology.We designed PVA/GAP into an oil-in-water(O/W)emulsion,in the way that the aqueous solution of PVA as water phase,the ethyl acetate solution of GAP as oil phase,the combination of Tween 80 and SDS as emulsifier,BPS as a curing agent of GAP.The ideal formulation with good shear-thinning rheology properties and clear gel point was prepared using only 10 wt%emulsion.The dual-cured network formed during the curing process made the printed sample have good mechanical properties.The printed samples had satisfactory molding effect without cracks or fractures,the crystal form of CL-20 not changed and the thermal stability have improved.Deposition of explosive inks via DIW in micro-scale grooves had excellent detonation performances,which critical detonation size was 1×0.045 mm,detonation velocity was 7129 m/s and when the corner reaching 150°can still detonated stably.This study may open new avenues for developing binder systems in explosive ink formulations.
基金financial support from the National Key Fundamental Research and Development Project of China (2014CB644002)。
文摘Ti-Fe-x TiC(x=0, 3, 6, 9, wt.%) composites were fabricated through low temperature ball milling of Ti, Fe and TiC powders, followed by spark plasma sintering. The results show that β-Ti, β-Ti-Fe, η-Ti4 Fe2 O0.4 and TiC particles can be found in the composites. The microstructure can be obviously refined with increasing the content of TiC particles. The coefficient of friction(COF) decreases and the hardness increases with increasing the content of TiC particles. The adhesive wear is the dominant wear mechanism of all the Ti-Fe-x TiC composites. The Ti-Fe-6 TiC composite shows the best wear resistance, owing to the small size and high content of TiC particle as well as relatively fine microstructure. The wear rate of the Ti-Fe-6 TiC composite is as low as 1.869× 10-5 mm3/(N·m) and the COF is only 0.64. Therefore, TiC particle reinforced Ti-Fe based composites may be utilized as potential wear resistant materials.
基金The project supported by the National Natural Science Foundation of China (10125211 and 10072002),the Scientific Committee of Yunnan Province for the Program of Steel Fiber Reinforced Concrete,and the Institute of Chemical Materials,CAEP at Mianyang
文摘This paper presents the applications of digital image correlation technique to the mesoscopic damage and fracture study of some granular based composite materials including steel- fiber reinforced concrete,sandstone and crystal-polymer composite.The deformation fields of the composite materials resulted from stress localization were obtained by the correlation computation of the surface images with loading steps and thus the related damage prediction and fracture parameters were evaluated.The correlation searching could be performed either directly based on the gray levels of the digital images or from the wavelet transform(WT)coefficients of the transform spectrum.The latter was developed by the authors and showed higher resolution and sensitivity to the singularity detection. Because the displacement components came from the rough surfaces of the composite materials without any coats of gratings or fringes of optical interferometry,both surface profiles and the deformation fields of the composites were visualized which was helpful to compare each other to analyze the damage of those heterogeneous materials.
文摘With an ever increasing energy demand and environmental issues, many state-of-the-art nanostructured electrode materials have been developed for energy storage devices and they include batteries, supercapacitors and fuel cells. Among these electrode materials, L-TMD (layered transition metal dichalcogenide) nanosheets (especially, S (sulfur) and Se (selenium) based dichaleogenides) have received a lot of attention due to their intriguing layered structure for enhanced electrochemical properties. L-TMD composites have recently been investigated not only as a main charge storage specie but also, as a substrate to hold the active specie. This review highlights the recent advancements in L-TMD composites with 0D (0-dimensional), 1 D, 2D, 3D and various forms of carbon structures and their potential applications in LIB (lithium ion battery) and SIB (sodium ion battery).
基金Project supported by the International Exchange Program of Harbin Engineering University for Innovation-oriented Talents Cultivation,ChinaProject(51001034)supported by the National Natural Science Foundation of China+3 种基金Projects(2008AA4CH044,2009AA1AG065,2010AA4BE031)supported by the Key Project of Science and Technology of Harbin City,ChinaProject(HEUCF101001)supported by the Fundamental Research Funds for the Central Universities,ChinaProject(20092304120020)supported by the Research Fund for the Doctoral Program of Higher Education,ChinaProject(208181)supported by the Key Project of Chinese Ministry of Education
文摘B 4 C p /Mg-8Li-1Zn and B 4 C p /Mg-8Li-1Al-1Y composites were prepared with hot-extrusion solid-state composite processing. The microstructures and mechanical properties of the composites were studied. With the optimized parameters, the deformation effects and the migration of α phase are improved, and the amount and size of foil gaps are decreased. The bonding force between foils is improved, and the oxidation of foils is lowered. The results of tensile test show that the strengths of the B 4 C p /Mg-8Li-1Zn and B 4 C p /Mg-8Li-1Al-1Y composites are increased obviously after hot-extrusion solid-state composite processing (238 MPa and 257.23 MPa, respectively). The specific strength of B 4 C p /Mg-8Li-1Al-1Y composite is the highest (169.23×10 3 cm).