The frequent occurrence of safety accidents during the calendering process is caused by the flammable and explosive properties of composite modified double-base(CMDB)propellant.Optimization of process parameters with ...The frequent occurrence of safety accidents during the calendering process is caused by the flammable and explosive properties of composite modified double-base(CMDB)propellant.Optimization of process parameters with the aid of fluid simulation technology could effectively ensure the safety of the calendering process.To improve the accuracy of the simulation results,material parameters and model structure were corrected based on actual conditions,and adaptive grid technology was applied in the local mesh refinement.In addition,the rheological behavior,motion trajectories and heat transfer mechanisms of CMDB propellant slurry were studied with different gaps,rotational rates and temperatures of two rollers.The results indicated that the refined mesh could significantly improve the contour clarity of boundaries and simulate the characteristics of CMDB propellant slurry reflux movement caused by the convergent flow near the outlet.Compared with the gap,the increased rotational rate of roller could promote the reflux movement and intensify the shear flow of slurry inside the flow region by viscous shear dragging.Meanwhile,under the synergistic effect of contact heat transfer as well as convective heat exchange,heat accumulated near the outlet and diffused along the reflux movement,which led to the countercurrent heat dissipation behavior of CMDB propellant slurry.The plasticizing mechanism of slurry and the safety of calendering under different conditions were explored,which provided theoretical guidance and reference data for the optimization of calendering process conditions.Based on the simulation results,the safety of the CMDB propellant calendering process could be significantly improved with a few tests conducted during a short research and development cycle.展开更多
Electrochemical oxidation of polyethylene glycol(PEG) in an acidic(pH 0.18 to 0.42) and high ionic strength electroplating solution was investigated. The electroplating solution is a major source of wastewater in the ...Electrochemical oxidation of polyethylene glycol(PEG) in an acidic(pH 0.18 to 0.42) and high ionic strength electroplating solution was investigated. The electroplating solution is a major source of wastewater in the printing wiring board industry. A paraffin composite copper hexacyanoferrate modified(PCCHM) electrode was used as the anode and a bare graphite electrode was used as the cathode. The changes in PEG and total organic carbon(TOC) concentrations during the course of the reaction were monitored. The efficiency of the PCCHM anode was compared with bare graphite anode and it was found that the former showed significant electrocatalytic property for PEG and TOC removal. Chlorides present in the solution were found to contribute significantly in the overall organic removal process. Short chain organic compounds like acetic acid, oxalic acid, formic acid and ethylene glycol formed during electrolysis were identified by HPLC method. Anode surface area and applied current density were found to influence the electro-oxidation process, in which the former was found to be dominating. Investigations of the kinetics for the present electrochemical reaction suggested that the two stage first-order kinetic model provides a much better representation of the overall mechanism of the process if compared to the generalized kinetic model.展开更多
Objective To investigate the effect of the implant composite of poly lactide-co-glycolide(PLGA)and bone mesenchymal stem cells (BMSCs) modified by basic fibroblast growth factor (bFGF) on injured spinal cord in rats.M...Objective To investigate the effect of the implant composite of poly lactide-co-glycolide(PLGA)and bone mesenchymal stem cells (BMSCs) modified by basic fibroblast growth factor (bFGF) on injured spinal cord in rats.Methods Two hundred and展开更多
Conventional repairing methods for asphalt pavement have some inconveniences,such as insufficient strength,and are typically time-consuming.To address these issues,this study proposes a new technological method to des...Conventional repairing methods for asphalt pavement have some inconveniences,such as insufficient strength,and are typically time-consuming.To address these issues,this study proposes a new technological method to design and prepare a high-performance assembled asphalt concrete block for fast repair of the potholes.A series of composite modified asphalt binders with 10%crumb rubber(CR)and different dosages(0%,1%,3%,5%)of polyurethane(PU)are examined to determine the optimized binder.Subsequently,the corresponding asphalt mixtures are prepared for further comparison and assessment of engineering properties,such as moistureinduced damage,high-temperature deformation,and low-temperature cracking characteristics.The test results show that PU can significantly improve the high-temperature performance and hardness of(crumb rubber modified asphalt)CRMA binder;3%PU contributes allowing the resistance of CRMA mixture to moisture-induced damage at higher levels,particularly under water whole immersion;as 3%PU is added,the high-temperature rutting deformation resistance of the CRMA mixture increases significantly,and the low-temperature anti-cracking properties are also improved slightly.Therefore,the innovatively designed high-quality assembled fast-repairing asphalt concrete block is recommended as an appropriate option for highway maintenance.展开更多
Anode modification plays a key role in higher power output in marine sediment microbial fuel cells(MSMFCs).A low-molecular organosilicon compound(3-aminopropyltriethoxysilane)was grafted onto the surface of carbon fel...Anode modification plays a key role in higher power output in marine sediment microbial fuel cells(MSMFCs).A low-molecular organosilicon compound(3-aminopropyltriethoxysilane)was grafted onto the surface of carbon felt using chemical method and a composite modified anode was prepared through organic ligands coordination Fe^(3+)for better electro-chemical per-formance.Results show that the biofilm resistance of the composite modified anode(2707Ω)is 1.3 times greater than that of the unmodified anode(2100Ω),and its biofilm capacitance also increases by 2.2 times,indicating that the composite modification pro-motes the growth and attachment of electroactive bacteria on the anode.Its specific capacitance(887.8 Fm^(−2))is 3.7 times higher than that of unmodified anode,generating a maximum current density of 1.5Am^(−2).In their Tafel curves,the composite modified anodic exchange current density(5.25×10^(−6)Acm^(−2))is 5.8 times bigger than that of unmodified anode,which suggests that the electro-chemical activity of redox,anti-polarization ability and electron transfer kinetic activity are significantly enhanced.The marine sediment microbial fuel cell with the composite modified anode generates the higher power densities than the blank(203.8mWm^(−2) versus 45.07mWm^(−2)),and its current also increases by 4.4 times.The free amino groups on the anode surface expands a creative idea that the modified anode ligates the natural Fe(Ⅲ)ion in sea water in the MSMFCs for its higher power output.展开更多
Fume suppression mechanisms and the effect of expanded graphite on the performance of asphalt were studied by applying infrared spectroscopy(FT-IR), X-ray diffraction(XRD), scanning electron microscopy(SEM) and ...Fume suppression mechanisms and the effect of expanded graphite on the performance of asphalt were studied by applying infrared spectroscopy(FT-IR), X-ray diffraction(XRD), scanning electron microscopy(SEM) and comprehensive thermal analysis(TG, DSC). The experimental results confirm that asphalt which is mixed with expandable graphite will expand in the process of hot mix, and the expanded graphite layer will swell by the light component in the asphalt. The light component in the asphalt and PAHs adsorption on expanded graphite surface or part of the plug in the expanded graphite layer between plates made nucleation crystallization growth. And the Van der Waals force and the bonding of the lattice can effectively restrain the asphalt fume release. Meanwhile, the expanding agent with oxidative can spread into the asphalt, leading to asphalt oxygenated and plastic abate, while the ductility decreases. Expanded graphite, SBS modifier and environment- friendly plasticizers are used to composite modified asphalt. According to asphalt fume release experiment, normal test of asphalt performance, Brookfield viscosity test, RTFOT test and asphalt mixture tests(high temperature stability, low temperature stability, water stability), it has been proven that the modified asphalt’s performance is better than that of matrix asphalt and equivalent to that of SBS modified asphalt. Furthermore, it has good fume suppression effect.展开更多
In the present paper, differential scanning calorimetry (DSC), scanning electron microscopy (SEM), and X-ray diffraction (XRD) were used to examine the effects of a Sr-Y composite modifier on the microstructure ...In the present paper, differential scanning calorimetry (DSC), scanning electron microscopy (SEM), and X-ray diffraction (XRD) were used to examine the effects of a Sr-Y composite modifier on the microstructure of A356 alloy. After adding Y to A356, YAl 3 compounds formed, and the size of the α (Al) crystal nucleus increased. The degree of supercooling caused by Sr-Y composite modifier was higher than Sr modification by 2.7 °C, leading to an increased nucleation rate. This increase in supercooling temperature was favorable to the refinement of eutectic structure of the alloy and its eutectic reaction was delayed to the maximum extent. The Si phase in the as-cast Sr-Y composite-modified A356 alloy was either granular or flaky. No large flakes of eutectic Si were found, and the modification effects were completely comparable with those obtained using a lone Sr modifier. After T6 heat treatment, most of the eutectic Si showed a grain-like shape with smaller grains. No eutectic Si with long-strip shapes, significant enhancements in the particle roundness and evenness of the Si crystals, and increased globosity were observed. Both the roundness and evenness of the grained Si crystals were enhanced, and the amount of globular eutectic Si available increased, these findings showed that excellent modification effects were achieved.展开更多
Waste plastics and rubber have always posed a threat to the environment and a great challenge for disposal.The use of these two waste materials as modifiers for road asphalt provides new road asphalt binders and at th...Waste plastics and rubber have always posed a threat to the environment and a great challenge for disposal.The use of these two waste materials as modifiers for road asphalt provides new road asphalt binders and at the same time provides a new way for waste material resource treatment.Rubber-modified asphalt and plastic-modified asphalt have received widespread attention due to their green and low-carbon characteristics and some performance advantages,but there are still some performance shortcomings that hinder their promotion and application.In order to continue to explore the application of waste materials in the field of road engineering,combined with the performance advantages of both,many scholars began to study the rubber-plastic composite modified asphalt(RPCMA).Therefore,this paper reviewed the different types of waste rubber and plastic,the comprehensive performance of different types of asphalt and its mixture performance,analyzed the modification mechanism of rubber-plastic composite modified asphalt and its performance changes.The results show that rubber-plastic composite modified asphalt is mostly prepared by directly adding modified materials.However,the pretreatment or melt granulation of rubber and plastic will make the performance of rubber-plastic modified asphalt has improved.There is a mutual promotion mechanism between rubber and plastic in asphalt,which makes the performance of rubber-plastic modified asphalt better than that of asphalt obtained by a single modification method(rubber modified asphalt or plastic modified asphalt).In some properties,it can be close to the commercial SBS modified asphalt.The performance of rubber and plastic composite modified asphalt at high temperature has been generally recognized by researchers,but its low-temperature performance is still controversial.Therefore,it is recommended to apply in high-temperature areas.Future work should focus on the development of composite modifiers with stable performance,low cost and ease of use,standardization of modification processes,improvement of low-temperature performance,and monitoring of road performance and environmental impact.展开更多
文摘The frequent occurrence of safety accidents during the calendering process is caused by the flammable and explosive properties of composite modified double-base(CMDB)propellant.Optimization of process parameters with the aid of fluid simulation technology could effectively ensure the safety of the calendering process.To improve the accuracy of the simulation results,material parameters and model structure were corrected based on actual conditions,and adaptive grid technology was applied in the local mesh refinement.In addition,the rheological behavior,motion trajectories and heat transfer mechanisms of CMDB propellant slurry were studied with different gaps,rotational rates and temperatures of two rollers.The results indicated that the refined mesh could significantly improve the contour clarity of boundaries and simulate the characteristics of CMDB propellant slurry reflux movement caused by the convergent flow near the outlet.Compared with the gap,the increased rotational rate of roller could promote the reflux movement and intensify the shear flow of slurry inside the flow region by viscous shear dragging.Meanwhile,under the synergistic effect of contact heat transfer as well as convective heat exchange,heat accumulated near the outlet and diffused along the reflux movement,which led to the countercurrent heat dissipation behavior of CMDB propellant slurry.The plasticizing mechanism of slurry and the safety of calendering under different conditions were explored,which provided theoretical guidance and reference data for the optimization of calendering process conditions.Based on the simulation results,the safety of the CMDB propellant calendering process could be significantly improved with a few tests conducted during a short research and development cycle.
文摘Electrochemical oxidation of polyethylene glycol(PEG) in an acidic(pH 0.18 to 0.42) and high ionic strength electroplating solution was investigated. The electroplating solution is a major source of wastewater in the printing wiring board industry. A paraffin composite copper hexacyanoferrate modified(PCCHM) electrode was used as the anode and a bare graphite electrode was used as the cathode. The changes in PEG and total organic carbon(TOC) concentrations during the course of the reaction were monitored. The efficiency of the PCCHM anode was compared with bare graphite anode and it was found that the former showed significant electrocatalytic property for PEG and TOC removal. Chlorides present in the solution were found to contribute significantly in the overall organic removal process. Short chain organic compounds like acetic acid, oxalic acid, formic acid and ethylene glycol formed during electrolysis were identified by HPLC method. Anode surface area and applied current density were found to influence the electro-oxidation process, in which the former was found to be dominating. Investigations of the kinetics for the present electrochemical reaction suggested that the two stage first-order kinetic model provides a much better representation of the overall mechanism of the process if compared to the generalized kinetic model.
文摘Objective To investigate the effect of the implant composite of poly lactide-co-glycolide(PLGA)and bone mesenchymal stem cells (BMSCs) modified by basic fibroblast growth factor (bFGF) on injured spinal cord in rats.Methods Two hundred and
基金the Scientific Technology R&D Project of CCCC Asset Management Co.,Ltd.(RP2022015294&RP2022015296).
文摘Conventional repairing methods for asphalt pavement have some inconveniences,such as insufficient strength,and are typically time-consuming.To address these issues,this study proposes a new technological method to design and prepare a high-performance assembled asphalt concrete block for fast repair of the potholes.A series of composite modified asphalt binders with 10%crumb rubber(CR)and different dosages(0%,1%,3%,5%)of polyurethane(PU)are examined to determine the optimized binder.Subsequently,the corresponding asphalt mixtures are prepared for further comparison and assessment of engineering properties,such as moistureinduced damage,high-temperature deformation,and low-temperature cracking characteristics.The test results show that PU can significantly improve the high-temperature performance and hardness of(crumb rubber modified asphalt)CRMA binder;3%PU contributes allowing the resistance of CRMA mixture to moisture-induced damage at higher levels,particularly under water whole immersion;as 3%PU is added,the high-temperature rutting deformation resistance of the CRMA mixture increases significantly,and the low-temperature anti-cracking properties are also improved slightly.Therefore,the innovatively designed high-quality assembled fast-repairing asphalt concrete block is recommended as an appropriate option for highway maintenance.
基金This work was supported by the National Natural Sci-ence Foundation of China(No.22075262).
文摘Anode modification plays a key role in higher power output in marine sediment microbial fuel cells(MSMFCs).A low-molecular organosilicon compound(3-aminopropyltriethoxysilane)was grafted onto the surface of carbon felt using chemical method and a composite modified anode was prepared through organic ligands coordination Fe^(3+)for better electro-chemical per-formance.Results show that the biofilm resistance of the composite modified anode(2707Ω)is 1.3 times greater than that of the unmodified anode(2100Ω),and its biofilm capacitance also increases by 2.2 times,indicating that the composite modification pro-motes the growth and attachment of electroactive bacteria on the anode.Its specific capacitance(887.8 Fm^(−2))is 3.7 times higher than that of unmodified anode,generating a maximum current density of 1.5Am^(−2).In their Tafel curves,the composite modified anodic exchange current density(5.25×10^(−6)Acm^(−2))is 5.8 times bigger than that of unmodified anode,which suggests that the electro-chemical activity of redox,anti-polarization ability and electron transfer kinetic activity are significantly enhanced.The marine sediment microbial fuel cell with the composite modified anode generates the higher power densities than the blank(203.8mWm^(−2) versus 45.07mWm^(−2)),and its current also increases by 4.4 times.The free amino groups on the anode surface expands a creative idea that the modified anode ligates the natural Fe(Ⅲ)ion in sea water in the MSMFCs for its higher power output.
基金Funded by the National Natural Science Foundation of China(No.51078372)the Doctoral Program of Higher Specialized Research Foundation(No.20105522110002)
文摘Fume suppression mechanisms and the effect of expanded graphite on the performance of asphalt were studied by applying infrared spectroscopy(FT-IR), X-ray diffraction(XRD), scanning electron microscopy(SEM) and comprehensive thermal analysis(TG, DSC). The experimental results confirm that asphalt which is mixed with expandable graphite will expand in the process of hot mix, and the expanded graphite layer will swell by the light component in the asphalt. The light component in the asphalt and PAHs adsorption on expanded graphite surface or part of the plug in the expanded graphite layer between plates made nucleation crystallization growth. And the Van der Waals force and the bonding of the lattice can effectively restrain the asphalt fume release. Meanwhile, the expanding agent with oxidative can spread into the asphalt, leading to asphalt oxygenated and plastic abate, while the ductility decreases. Expanded graphite, SBS modifier and environment- friendly plasticizers are used to composite modified asphalt. According to asphalt fume release experiment, normal test of asphalt performance, Brookfield viscosity test, RTFOT test and asphalt mixture tests(high temperature stability, low temperature stability, water stability), it has been proven that the modified asphalt’s performance is better than that of matrix asphalt and equivalent to that of SBS modified asphalt. Furthermore, it has good fume suppression effect.
基金Project supported by National Natural Science Foundation of China(51141007)
文摘In the present paper, differential scanning calorimetry (DSC), scanning electron microscopy (SEM), and X-ray diffraction (XRD) were used to examine the effects of a Sr-Y composite modifier on the microstructure of A356 alloy. After adding Y to A356, YAl 3 compounds formed, and the size of the α (Al) crystal nucleus increased. The degree of supercooling caused by Sr-Y composite modifier was higher than Sr modification by 2.7 °C, leading to an increased nucleation rate. This increase in supercooling temperature was favorable to the refinement of eutectic structure of the alloy and its eutectic reaction was delayed to the maximum extent. The Si phase in the as-cast Sr-Y composite-modified A356 alloy was either granular or flaky. No large flakes of eutectic Si were found, and the modification effects were completely comparable with those obtained using a lone Sr modifier. After T6 heat treatment, most of the eutectic Si showed a grain-like shape with smaller grains. No eutectic Si with long-strip shapes, significant enhancements in the particle roundness and evenness of the Si crystals, and increased globosity were observed. Both the roundness and evenness of the grained Si crystals were enhanced, and the amount of globular eutectic Si available increased, these findings showed that excellent modification effects were achieved.
基金sponsored by National Natural Science Foundation of China(No.52308466,No.42271144,No.42071100)Key Research and Development Project of Shaanxi Province(2022SF-328,2022GY-427)+1 种基金the SASAC Science and Technology Innovation Project(JF-23-01-0063)Shaanxi Provincial Transportation Research Project(24-19K,24-20K).
文摘Waste plastics and rubber have always posed a threat to the environment and a great challenge for disposal.The use of these two waste materials as modifiers for road asphalt provides new road asphalt binders and at the same time provides a new way for waste material resource treatment.Rubber-modified asphalt and plastic-modified asphalt have received widespread attention due to their green and low-carbon characteristics and some performance advantages,but there are still some performance shortcomings that hinder their promotion and application.In order to continue to explore the application of waste materials in the field of road engineering,combined with the performance advantages of both,many scholars began to study the rubber-plastic composite modified asphalt(RPCMA).Therefore,this paper reviewed the different types of waste rubber and plastic,the comprehensive performance of different types of asphalt and its mixture performance,analyzed the modification mechanism of rubber-plastic composite modified asphalt and its performance changes.The results show that rubber-plastic composite modified asphalt is mostly prepared by directly adding modified materials.However,the pretreatment or melt granulation of rubber and plastic will make the performance of rubber-plastic modified asphalt has improved.There is a mutual promotion mechanism between rubber and plastic in asphalt,which makes the performance of rubber-plastic modified asphalt better than that of asphalt obtained by a single modification method(rubber modified asphalt or plastic modified asphalt).In some properties,it can be close to the commercial SBS modified asphalt.The performance of rubber and plastic composite modified asphalt at high temperature has been generally recognized by researchers,but its low-temperature performance is still controversial.Therefore,it is recommended to apply in high-temperature areas.Future work should focus on the development of composite modifiers with stable performance,low cost and ease of use,standardization of modification processes,improvement of low-temperature performance,and monitoring of road performance and environmental impact.