期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Investigation of ZSM-5/MCM-41 Composite Molecular Sieve for Reducing Olefin Content of FCC Gasoline 被引量:5
1
作者 Ji Dekun~(1,2) Li Shuyuan~1 +2 位作者 Ding Fuchen~2 Chi Yaoling~2 (1.Chemical Engineering School,China University of Petroleum(Beijing),Beijing 102249 2.Department of Chemical Engineering,Beijing Institute of Petrochemical Technology) 《China Petroleum Processing & Petrochemical Technology》 SCIE CAS 2009年第4期10-17,共8页
ZSM-5/MCM-41 composite molecular sieve was prepared by the nano-assembling method.The ZSM-5 molecular sieve,the MCM-41 molecular sieve,the ZSM-5/MCM-41 mechanical mixture and the ZSM-5/MCM-41 composite molecular sieve... ZSM-5/MCM-41 composite molecular sieve was prepared by the nano-assembling method.The ZSM-5 molecular sieve,the MCM-41 molecular sieve,the ZSM-5/MCM-41 mechanical mixture and the ZSM-5/MCM-41 composite molecular sieve were characterized by X-ray powder diffractometry,N_2 adsorption isotherms,temperature programmed desorption of ammonia and scanning electron microscopy and their properties were analyzed.Using FCC gasoline as the feed,activities of different molecular sieves for reducing olefin content were investigated in a continuous high-pressure micro-reactor unit under the following conditions:a reaction temperature of 400℃,a reaction time of 2 h,a weight hourly space velocity of 3h^(-1),and a reaction pressure of 2.0 MPa.The results showed that the HMCM-41 molecular sieve had low reaction performance,and the HZSM-5 molecular sieve demonstrated high aromatization activity,while the ZSM-5/MCM- 41 composite molecular sieve exhibited a best olefin-reducing performance because of its high isomerization activity and moderate aromatization activity.With a largest olefin-reducmg capability and a reasonable distribution of products,the composite molecular sieve was more suitable for FCC gasoline upgrading compared to other three catalysts. 展开更多
关键词 ZSM-5 MCM-41 composite molecular sieve FCC gasoline olefin reduction
下载PDF
Cerium modified Y/SBA-15 composite molecular sieve catalyzed synthesis of n-butyl acetate 被引量:5
2
作者 史春薇 吴文远 +3 位作者 边雪 裴明远 赵杉林 陈平 《Journal of Rare Earths》 SCIE EI CAS CSCD 2016年第6期597-603,共7页
A novel Ce-Y/SBA-15 catalyst was prepared by modifying HY/SBA-15 microporous-mesoporous composite molecular sieve with cerium using the impregnation method. The characterization results from scanning electron microsco... A novel Ce-Y/SBA-15 catalyst was prepared by modifying HY/SBA-15 microporous-mesoporous composite molecular sieve with cerium using the impregnation method. The characterization results from scanning electron microscopy/energy dispersive X-ray dispersive spectroscopy(SEM/EDS), transmission electron microscopy(TEM), and X-ray fluorescence(XRF) studies indicated that the Ce-modified catalyst maintained the microporous-mesoporous structure of Y/SBA-15. The Ce ions were found to be uniformly dispersed in the pores of the molecular sieve without aggregation. The results from pyrolysis coupled-Fourier transform infrared spectroscopy(Pyridine-FTIR) and temperature programmed desorption of ammonia(NH3-TPD) showed that the loading of cerium caused the hydroxyl group in the catalyst to display stronger Bronsted acidity. The efficiency of the modified Ce-Y/SBA-15 catalyst was evaluated by using it to catalyze the synthesis of n-butyl acetate. The optimal synthesis conditions were determined by orthogonal experiments. The highest esterification yield of 94.4% was obtained when the reaction time was 2.0 h, with acid/alcohol molar ratio of 1:1.2, and catalyst loading of 10 wt.%. The results in this study demonstrated that the loading of cerium and the structure of Y/SBA-15 microporous-mesoporous composite molecular sieve helped in improving the catalytic activity of this acidic catalyst. 展开更多
关键词 Ce-modification microporous-mesoporous composite molecular sieves catalyst n-butyl acetate rare earths
原文传递
Catalytic performance of hierarchical H-ZSM-5/MCM-41 for methanol dehydration to dimethyl ether 被引量:7
3
作者 Yu Sang Hongxiao Liu +4 位作者 Shichao He Hansheng Li Qingze Jiao Qin Wu Kening Sun 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2013年第5期769-777,共9页
Micro-mesoporous composite molecular sieves H-ZSM-5/MCM-41 were prepared by the hydrothermal technique with alkali-treated H-ZSM-5zeolite as the source and characterized by scanning electron microscopy,transmission el... Micro-mesoporous composite molecular sieves H-ZSM-5/MCM-41 were prepared by the hydrothermal technique with alkali-treated H-ZSM-5zeolite as the source and characterized by scanning electron microscopy,transmission electron microscopy,energy dispersive spectroscopy,X-ray diffraction,N2 adsorption-desorption measurement and NH3 temperature-programmed desorption.The catalytic performances for the methanol dehydration to dimethyl ether over H-ZSM-5/MCM-41 were evaluated.Among these catalysts,H-ZSM-5/MCM-41 prepared with NaOH dosage (nNa/nSi) varying from 0.4 to 0.47 presented excellent catalytic activity with more than 80%methanol conversion and 100%dimethyl ether selectivity in a wide temperature range of 170—300℃,and H-ZSM-5/MCM-41 prepared with nNa/nSi=0.47 showed constant methanol conversion of about 88.7%,100% dimethyl ether selectivity and excellent lifetime at 220℃.The excellent catalytic performances were due to the highly active and uniform acidic sites and the hierarchical porosity in the micro-mesoporous composite molecular sieves.The catalytic mechanism of H-ZSM-5/MCM-41 for the methanol dehydration to dimethyl ether process was also discussed. 展开更多
关键词 hierarchical porosity H-ZSM-5 composite molecular sieve methanol dehydration dimethyl ether
下载PDF
Oxidation-extraction desulfurization of model oil over Zr-ZSM-5/SBA-15 and kinetic study 被引量:4
4
作者 Chuanzhu LU Hui FU Huipeng LI Hua ZHAO Tianfeng CAI 《Frontiers of Chemical Science and Engineering》 SCIE EI CAS CSCD 2014年第2期203-211,共9页
ZSM-5/SBA-15 composite molecular sieves were synthesized using post-synthesis method and characterized by X-ray diffraction and N2 adsorption-desorption. The oxidative-extration desulfurization of model oil was invest... ZSM-5/SBA-15 composite molecular sieves were synthesized using post-synthesis method and characterized by X-ray diffraction and N2 adsorption-desorption. The oxidative-extration desulfurization of model oil was investigated by using hydrogen peroxide as the oxidant, tetrabutyl ammonium bromide as phase transfer catalyst, dimethyl sulfoxide as extractant, and Zr-ZSM-5/ SBA-15, Ag-ZSM-5/SBA-15, Ce-ZSM-5/SBA-15 as catalyst. Under the optimal conditions, the desulfurization rate decreases in the order: Zr-ZSM-5/SBA-15 〉 Ce-ZSM- 5/SBA-15 〉 Ag-ZSM-5/SBA-15. The highest desulfuriza- tion rate is 84.53% under the catalysis of Zr-ZSM-5/SBA- 15. Kinetics analysis shows that the reaction is pseudofirst-order with the activation energy of 44.23 kJ/mol. 展开更多
关键词 composite molecular sieve oxidation desul-furation extraction KINETIC
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部