Low-cost and flexible solid polymer electrolytes are promising in all-solid-state Li-metal batteries with high energy density and safety.However,both the low room-temperature ionic conductivities and the small Li^(+)t...Low-cost and flexible solid polymer electrolytes are promising in all-solid-state Li-metal batteries with high energy density and safety.However,both the low room-temperature ionic conductivities and the small Li^(+)transference number of these electrolytes significantly increase the internal resistance and overpotential of the battery.Here,we introduce Gd-doped CeO_(2) nanowires with large surface area and rich surface oxygen vacancies to the polymer electrolyte to increase the interaction between Gd-doped CeO_(2) nanowires and polymer electrolytes,which promotes the Li-salt dissociation and increases the concentration of mobile Li ions in the composite polymer electrolytes.The optimized composite polymer electrolyte has a high Li-ion conductivity of 5×10^(-4)4 S cm^(-1) at 30℃ and a large Li+transference number of 0.47.Moreover,the composite polymer electrolytes have excellent compatibility with the metallic lithium anode and high-voltage LiNi_(0.8)Mn _(0.1)Co_(0.1)O_(2)(NMC)cathode,providing the stable cycling of all-solid-state batteries at high current densities.展开更多
A new method to fabricate metal/conducting polymer composite nanowires is presented by taking silver/polypyrrole composite nanowires as an example. A silver (D-coordinated organogel as template was prepared firstly, ...A new method to fabricate metal/conducting polymer composite nanowires is presented by taking silver/polypyrrole composite nanowires as an example. A silver (D-coordinated organogel as template was prepared firstly, and redox-polymerization of pyrrole took place on the gel fiber, giving product of silver/polypyrrole nanowires. The silver/polypyrrole nanowires were characterized by multiple techniques. This strategy could be carried out in one-step procedure at room temperature, and it proves the utility of coordinated organogels in template synthesis of polymer nanostructures.展开更多
Superconducting nanowire single-photon detectors (SNSPDs) with a composite optical structure composed of phase-grating and optical cavity structures are designed to enhance both the system detection efficiency and t...Superconducting nanowire single-photon detectors (SNSPDs) with a composite optical structure composed of phase-grating and optical cavity structures are designed to enhance both the system detection efficiency and the response bandwidth. Numerical simulation by the finite-difference time-domain method shows that the photon absorption capacity of SNSPDs with a composite optical structure can be enhanced significantly by adjusting the parameters of the phase-grating and optical cavity structures at multiple frequency bands. The absorption capacity of the superconducting nanowires reaches 70%, 72%, 60.73%, 61.7%, 41.2%, and 46.5% at wavelengths of 684, 850, 732, 924, 1256, and 1426nm, respectively. The use of a composite optical structure reduces the total filling factor of superconducting nanowires to only 0.25, decreases the kinetic inductance of SNSPDs, and improves the count rates.展开更多
The composite that can absorb the high-performance electromagnetic(EM) wave is constructed into a sandwiched structure composed of carbon black(CB)/ethylene-vinyl acetate(EVA) and Ag naowires(Ag NWs). The Ag N...The composite that can absorb the high-performance electromagnetic(EM) wave is constructed into a sandwiched structure composed of carbon black(CB)/ethylene-vinyl acetate(EVA) and Ag naowires(Ag NWs). The Ag NWs sandwiched between two CB/EVA layers are used to improve the absorption properties of composite. The effects of EVA-to-CB weight ratio, concentration and diameter of Ag NWs with a thickness of 0.4 mm on microwave absorption are investigated.The results indicate that for an EVA-to-CB weight ratio of 1:3, Ag NW concentration of 1.0 mg/100 m L, and average diameter of 56 nm, the reflection loss(RL) of the composite is below-10 d B in a frequency range of 9.3 Ghz–18.0 GHz, with the minimum values of-40.0 d B and-25.6 d B at 13.5 GHz and 15.3 GHz, respectively. A finite element method(FEM)is used for calculating the RL of the composite. The calculated results are in agreement with the experimental data.展开更多
基金This work was supported by the National Natural Science Foundation of China (51973157,61904123)the Tianjin Natural Science Foundation (18JCQNJC02900)+3 种基金the Special Grade of the Financial Support from the China Postdoctoral Science Foundation (2020T130469)the Sci-ence and Technology Plans of Tianjin (19PTSYJC00010)the Science&Technol-ogy Development Fund of Tianjin Education Commission for Higher Education (2018KJ196)State Key Laboratory of Membrane and Membrane Separation,Tiangong University.
文摘Low-cost and flexible solid polymer electrolytes are promising in all-solid-state Li-metal batteries with high energy density and safety.However,both the low room-temperature ionic conductivities and the small Li^(+)transference number of these electrolytes significantly increase the internal resistance and overpotential of the battery.Here,we introduce Gd-doped CeO_(2) nanowires with large surface area and rich surface oxygen vacancies to the polymer electrolyte to increase the interaction between Gd-doped CeO_(2) nanowires and polymer electrolytes,which promotes the Li-salt dissociation and increases the concentration of mobile Li ions in the composite polymer electrolytes.The optimized composite polymer electrolyte has a high Li-ion conductivity of 5×10^(-4)4 S cm^(-1) at 30℃ and a large Li+transference number of 0.47.Moreover,the composite polymer electrolytes have excellent compatibility with the metallic lithium anode and high-voltage LiNi_(0.8)Mn _(0.1)Co_(0.1)O_(2)(NMC)cathode,providing the stable cycling of all-solid-state batteries at high current densities.
基金The financial support from the National Natural Science Foundation of China(Nos.20574041 and 20874055)Hi-tech Research and Development Program(863 plan)of China(No.SQ2009AA06XK1482459)
文摘A new method to fabricate metal/conducting polymer composite nanowires is presented by taking silver/polypyrrole composite nanowires as an example. A silver (D-coordinated organogel as template was prepared firstly, and redox-polymerization of pyrrole took place on the gel fiber, giving product of silver/polypyrrole nanowires. The silver/polypyrrole nanowires were characterized by multiple techniques. This strategy could be carried out in one-step procedure at room temperature, and it proves the utility of coordinated organogels in template synthesis of polymer nanostructures.
基金Supported by the National Basic Research Program of China under Grant Nos 2011CBA00100 and 2011CBA00200the National Natural Science Foundation of China under Grant Nos 11227904 and 61101012+1 种基金the National High-Technology ResearchDevelopment Program of China under Grant No 2011AA010204the Jiangsu Key Laboratory of Advanced Techniques for Manipulating Electromagnetic Waves
文摘Superconducting nanowire single-photon detectors (SNSPDs) with a composite optical structure composed of phase-grating and optical cavity structures are designed to enhance both the system detection efficiency and the response bandwidth. Numerical simulation by the finite-difference time-domain method shows that the photon absorption capacity of SNSPDs with a composite optical structure can be enhanced significantly by adjusting the parameters of the phase-grating and optical cavity structures at multiple frequency bands. The absorption capacity of the superconducting nanowires reaches 70%, 72%, 60.73%, 61.7%, 41.2%, and 46.5% at wavelengths of 684, 850, 732, 924, 1256, and 1426nm, respectively. The use of a composite optical structure reduces the total filling factor of superconducting nanowires to only 0.25, decreases the kinetic inductance of SNSPDs, and improves the count rates.
基金Project partly supported by the National Natural Science Foundation of China(Grant No.61275174)
文摘The composite that can absorb the high-performance electromagnetic(EM) wave is constructed into a sandwiched structure composed of carbon black(CB)/ethylene-vinyl acetate(EVA) and Ag naowires(Ag NWs). The Ag NWs sandwiched between two CB/EVA layers are used to improve the absorption properties of composite. The effects of EVA-to-CB weight ratio, concentration and diameter of Ag NWs with a thickness of 0.4 mm on microwave absorption are investigated.The results indicate that for an EVA-to-CB weight ratio of 1:3, Ag NW concentration of 1.0 mg/100 m L, and average diameter of 56 nm, the reflection loss(RL) of the composite is below-10 d B in a frequency range of 9.3 Ghz–18.0 GHz, with the minimum values of-40.0 d B and-25.6 d B at 13.5 GHz and 15.3 GHz, respectively. A finite element method(FEM)is used for calculating the RL of the composite. The calculated results are in agreement with the experimental data.