Graphene(GR),a single‐layer carbon sheet with a hexagonal packed lattice structure,has displayed attractive potential and demonstrably become the research focus in artificial photocatalysis due to its enchanting prop...Graphene(GR),a single‐layer carbon sheet with a hexagonal packed lattice structure,has displayed attractive potential and demonstrably become the research focus in artificial photocatalysis due to its enchanting properties in enhancing light absorption,electron transfer dynamics,and surface reactions.Currently,numerous efforts have shown that the properties of GR,which are closely correlated to the photocatalytic performance of GR‐based composites are significantly affected by the synthesis methods.Herein,we first introduce the optimization strategies of GR‐based hybrids and then elaborate the synthesis of GR‐based composite photocatalysts oriented by manifold roles of GR in photoredox catalysis,containing photoelectron mediator and acceptor,improving adsorption capacity,regulating light absorption range and intensity,as well as macromolecular photosensitizer.Beyond that,a brief outlook on the challenges in this burgeoning research field and potential evolution strategies for enhancing the photoactivity of GR‐based hybrids is presented and we anticipate that this review could provide some enlightenments for the rational construction and application of multifunctional GR‐based composite photocatalysts.展开更多
A series of CdxZn1-xS (x = 0.1-0.9) photocatalysts were prepared by coprecipitation. They could form solid solution semiconductors with hexagonal phase in agreement with pure CdS by characterization of XRD. The photop...A series of CdxZn1-xS (x = 0.1-0.9) photocatalysts were prepared by coprecipitation. They could form solid solution semiconductors with hexagonal phase in agreement with pure CdS by characterization of XRD. The photophysical properties of CdxZn1-xS photocatalysts were measured by UV-Vis diffuse reflectance spectrum and surface photovoltage spectroscopy (SPS). The band gap energy gradually reduced with the increasing of x value in CdxZn1-xS,and when x = 0.7,the Cd0.7Zn0.3S photocatalyst had the strongest sur...展开更多
AgCl/Ti_(3)C_(2)@TiO_(2)ternary composites were prepared to form a heterojunction structure between AgCl and TiO_(2)and introduce Ti3C2 as a cocatalyst.The as-prepared AgCl/Ti_(3)C_(2)@TiO_(2)composites showed higher ...AgCl/Ti_(3)C_(2)@TiO_(2)ternary composites were prepared to form a heterojunction structure between AgCl and TiO_(2)and introduce Ti3C2 as a cocatalyst.The as-prepared AgCl/Ti_(3)C_(2)@TiO_(2)composites showed higher photocatalytic activity than pure AgCl and Ti_(3)C_(2)@TiO_(2)for photooxidation of a 1,4-dihydropyridine derivative(1,4-DHP)and tetracycline hydrochloride(TCH)under visible light irradiation(λ>400 nm).The photocatalytic activity of AgCl/Ti_(3)C_(2)@TiO_(2)composites depended on Ti_(3)C_(2)@TiO_(2)content,and the catalytic activity of the optimized samples were 6.9 times higher than that of pure AgCl for 1,4-DHP photodehydrogenation and 7.3 times higher than that of Ti_(3)C_(2)@TiO_(2)for TCH photooxidation.The increased photocatalytic activity was due to the formation of a heterojunction structure between AgCl and TiO_(2)and the introduction of Ti3C2 as a cocatalyst,which lowered the internal resistance,sped up the charge transfer,and increased the separation efficiency of photogenerated carries.Photogenerated holes and superoxide radical anions were the major active species in the photocatalytic process.展开更多
Photocatalysis as an emerging "green" energy conversion technology has attracted domestic and international attention.This technology uses semiconductor photocatalysts to convert solar energy into directly u...Photocatalysis as an emerging "green" energy conversion technology has attracted domestic and international attention.This technology uses semiconductor photocatalysts to convert solar energy into directly usable chemical energy,showing great potential for application in environmental pollutant purification and clean energy production,with broad development prospects.Among many semiconductor materials,tungsten trioxide(WO_(3)) is favored by researchers in the field of photocatalysis because of its good visible light response and excellent valence band hole oxidation properties.Currently,a large number of photocatalysts based on WO_(3),in particular W03-based composite photocatalysts,have been reported,and their applications cover a wide range of fields.In order to promote the development of WO_(3)-based photocatalysts and provide a reference for colleagues,we present a systematic summary of the applications and research progress of W03-based composites in the field of photocatalysis in recent years.Starting from the structural properties of WO_(3)itself,this article summarizes the preparation methods and structure-activity relationships of WO_(3)-based composite photocatalysts.Subsequently,it introduces the current application status of existing WO_(3)-based composite photocatalysts in CO_(2) reduction,hydrogen production,nitrogen fixation,and pollutant removal.Finally,the development prospects were analyzed.展开更多
As an ideal solution to energy and environment issues,conversion of sunlight into solar fuels by photocatalytic water splitting and greenhouse gas(CO_2)reduction has attracted keen research interest of multi-field sci...As an ideal solution to energy and environment issues,conversion of sunlight into solar fuels by photocatalytic water splitting and greenhouse gas(CO_2)reduction has attracted keen research interest of multi-field scientists.In the past four decades,a large number of semiconductor photocatalysts have been展开更多
A series of carbon nanotubes/TiO2 nanotubes (CNTs/TNTs) composite photocatalysts were successfully prepared by incorporation of CNTs in HNO3 washing process. These photocatalysts were characterized by XRD, N2 physic...A series of carbon nanotubes/TiO2 nanotubes (CNTs/TNTs) composite photocatalysts were successfully prepared by incorporation of CNTs in HNO3 washing process. These photocatalysts were characterized by XRD, N2 physical adsorption, UV-vis diffuse reflectance spectroscopy, TEM and Raman spectroscopy, respectively, and their photocatalytic activities were tested by using methyl orange (MO) as a model compound. Also, the effects of amount of CNTs incorporated, calcination temperature and amount of catalyst on the photocatalytic activity of the composite photocatalyst were systematically investigated. The results show that the CNTs/TNTs composite exhibits much higher photocatalytic activity than that of the TNTs or CNTs alone.展开更多
TiO2 and montmorillonite composite photocatalysts were prepared and applied in degrading γ-hexachlorocyclohexane (γ-HCH) in soils. After being spiked with γ-HCH, soil samples loaded with the composite photocataly...TiO2 and montmorillonite composite photocatalysts were prepared and applied in degrading γ-hexachlorocyclohexane (γ-HCH) in soils. After being spiked with γ-HCH, soil samples loaded with the composite photocatalysts were exposed to UV-light irradiation. The results indicated that the photocatalytic activities of the composite photocatalysts varied with the content of TiO2 in the order of 10%〈70%〈50% 〈30%, Moreover, the photocatalytic activity of the composite photocatalysts with TiO2 content 30% was higher than that of the pure P25 with the same mass of TiO2. The strong adsorption capacity of the composite photocatalysts and quantum size effect may contribute to its increased photocatalytic activities. In addition, effect of dosage of composite photocatalysts and soil pH on γ-HCH photodegradation was investigated. Pentachlorocyclohexene, trichlorocyclohexene, and dichlorobenzene were detected as photodegradation intermediates, which were gradually degraded with the photodegradation evolution.展开更多
Er-doped BiVO4 composite photocatalyst was hydrothermal synthesized and characterized by X-ray powder diffraction, scanning electron microscopy, energy-dispersive X-ray Spectroscopy, X-ray photoelectron spectroscopy, ...Er-doped BiVO4 composite photocatalyst was hydrothermal synthesized and characterized by X-ray powder diffraction, scanning electron microscopy, energy-dispersive X-ray Spectroscopy, X-ray photoelectron spectroscopy, and UV-Vis diffuse reflectance spectra techniques. The activity of the catalyst was determined by oxidative decomposition of methyl orange in aqueous solution under visible-light irradiation. X-ray photoelectron spectroscopy and energy-dispersive X-ray Spectroscopy analysis revealed that the doped Er existed in the form of Er2O3. It also showed that the Er doping can enhance the visible-light absorption abilities of catalysts and their visible-light-driven photocatalytic activities in comparison with those of pure BiVO4.展开更多
Polyaniline (PAn) sensitized nanocrystalline TiO2 composites (TiO2/PAn) were successfully prepared and used as an efficient photocatalyst for the degradation of dye methylene blue (MB). The results showed that P...Polyaniline (PAn) sensitized nanocrystalline TiO2 composites (TiO2/PAn) were successfully prepared and used as an efficient photocatalyst for the degradation of dye methylene blue (MB). The results showed that PAn was able to sensitize TiO2 efficiently and the composite photocatalyst could be activated by absorbing both the ultraviolet and visible light (λ: 190 ~ 800 nm), whereas pure TiO2 absorbed ultraviolet light only (λ 〈 380 nm). Under the irradiation of natural light, MB could be degraded more efficiently on the TiO2/PAn composites than on the TiO2 Furthermore, it could be easily separated from the solution by simple sedimentation.展开更多
Simultaneously utilizing photogenerated electrons and holes to convert renewable biomass and its derivatives into corresponding value‐added products and hydrogen(H_(2))is a promising strategy to deal with the energy ...Simultaneously utilizing photogenerated electrons and holes to convert renewable biomass and its derivatives into corresponding value‐added products and hydrogen(H_(2))is a promising strategy to deal with the energy and environmental crisis.Herein,we report a facile hydrothermal method to construct a direct Z‐scheme CdS/WO_(3) binary composite for photocatalytic coupling redox reaction,simultaneously producing H_(2) and selectively converting aromatic alcohols into aromatic aldehydes in one pot.Compared with bare CdS and WO_(3),the CdS/WO_(3) binary composite exhibits significantly enhanced performance for this photocatalytic coupled redox reaction,which is ascribed to the ex‐tended light harvesting range,efficient charge carrier separation rate and optimized redox capabil‐ity of CdS/WO_(3) composite.Furthermore,the feasibility of converting various aromatic alcohols to corresponding aldehydes coupled with H_(2) evolution on the CdS/WO_(3) photocatalyst is proved and a reasonable reaction mechanism is proposed.It is hoped that this work can provide a new insight into the construction of direct Z‐scheme photocatalysts to effectively utilize the photogenerated electrons and holes for photocatalytic coupled redox reaction.展开更多
A high active novel TiO2/AC composite photocatalyst was prepared and used for phenol degradation. It was much more active than P-25 and exhibiting good decantability, less deactivation after several runs and less sens...A high active novel TiO2/AC composite photocatalyst was prepared and used for phenol degradation. It was much more active than P-25 and exhibiting good decantability, less deactivation after several runs and less sensitive to pH change. Diffuse reflectance spectra (DRS) revealed that the electronic change in TiO2 did not occur by the addition of AC. Results of SEM and XRD suggested that better TiO2 distribution can be achieved when optimal AC content was adopted. The performance of the prepared TiO2/5AC catalyst revealed great practical potential in wastewater treatment field.展开更多
The long-standing popularity of semiconductor photocatalysis,due to its great potential in a variety of applications,has resulted in the creation of numerous semiconductor photocatalysts,and it stimulated the developm...The long-standing popularity of semiconductor photocatalysis,due to its great potential in a variety of applications,has resulted in the creation of numerous semiconductor photocatalysts,and it stimulated the development of various characterization methods.In this study,Fe_(2)O_(3)/Bi_(2)WO_(6)composite with a flower-like microsphere and hierarchical structure was synthesized with the facile hydrothermal-impregnation method without any surfactants.X-ray diffraction(XRD),scanning electron microscopy(SEM),ultravioletevisible(UV-Vis)diffuse reflectance spectroscopy,and photoluminescence spectroscopy were used to characterize the structures of the samples.The specific surface area was estimated with the Brunauer-Emmett-Teller(BET)method,and pore size distribution was determined using the Barrett-Joyner-Halenda(BJH)method.The synthesized Fe_(2)O_(3)/Bi_(2)WO_(6)composite had an average diameter of approximately 4 nm,with smaller specific surface area and larger pore diameter than those of pristine Bi_(2)WO_(6).The results of XRD and SEM analyses confirmed that the composite was composed of Fe_(2)O_(3)and Bi_(2)WO_(6).The absorption edge of Bi_(2)WO_(6)was at a wavelength of 460 nm.By contrast,the absorption edge of Fe_(2)O_(3)/Bi_(2)WO_(6)to visible light was redshifted to 520 nm,with narrower bandgap width and stronger visible light response.It was also found that the main active substances in the degradation of microcystin-LR(MC-LR)were hydroxyl radicals(·OH)and electron holes(h^(+)).Consequently,the results further showed that the heterojunction between Fe_(2)O_(3)and Bi_(2)WO_(6)can improve the charge transfer rate and effectively separate the photoinduced electrons and holes.Compared with Bi_(2)WO_(6),Fe_(2)O_(3)/Bi_(2)WO_(6)had no significant difference in the adsorption capacity of MC-LR and had more efficient photocatalytic degradation activity of MC-LR.The degradation rates of MC-LR by Fe_(2)O_(3)/Bi_(2)WO_(6)and Bi_(2)WO_(6)reached 80%and 56%,respectively.The degradation efficiency of MC-LR was affected by the initial pH value,initial Fe_(2)O_(3)/Bi_(2)WO_(6)concentration,and initial MC-LR concentration.展开更多
The ever-increasing quantity of spent lithium-ion batteries(LIBs)is both a potential environmental pollutant and a valuable resource.The spent LIBs recycling mainly aimed at the separation of valuable elements.Some is...The ever-increasing quantity of spent lithium-ion batteries(LIBs)is both a potential environmental pollutant and a valuable resource.The spent LIBs recycling mainly aimed at the separation of valuable elements.Some issues still exist in these processes such as high energy consumption and complex separation procedures.This study avoided element separation and proposed a facile approach to transform spent LiCoO_(2) electrode into a lithium(Li)-doped graphitic carbon nitride(g-C_(3)N_(4))/Co_(3)O_(4) composite photocatalyst through one-pot in situ thermal reduction.During the thermal process,melamine served as the reductant for LiCoO_(2) decomposition and the raw material for g-C_(3)N_(4) production.Li was in situ doped in g-C_(3)N_(4) and the generated Co_(3)O_(4) was in situ integrated,forming a Li-doped g-C_(3)N_(4)/Co_(3)O_(4) composite photocatalyst.This special composite exhibited an enhanced photocatalytic performance,and its photocatalytic H2 production and RhB degradation rates were 8.7 and 6.8 times higher than those of g-C_(3)N_(4).The experiments combined with DFT calculation revealed that such enhanced photocatalytic efficiency was ascribed to the synergy effect of Li doping and Co_(3)O_(4) integrating,which extended the visible light absorption(450-900 nm)and facilitated the charge transfer and separation.This study transforms waste into a high-efficient catalyst,realizing high-valued utilization of waste and environmental protection.展开更多
The photocatalytic properties of surface TiO2 supported zeolite in a semi batch reactor for the reduction of Cr(VI) in the presence of methyl orange dye were investigated. The prepared composite photocatalyst was ch...The photocatalytic properties of surface TiO2 supported zeolite in a semi batch reactor for the reduction of Cr(VI) in the presence of methyl orange dye were investigated. The prepared composite photocatalyst was characterized by SEM-EDS (scanning electron microscopy and energy dispersive spectroscopy). The effects of operating parameters such as the pH and concentration of Cr(VI) in the absence and presence of dye were evaluated. The Cr(VI) reduction was more efficient in the ternary system (Cr(VI)/dye/TiO2-zeolite) than that of the corresponding binary system (Cr(VI)/TiO2-zeolite). The extent of metal reduction after 210 min of irradiation was 68% at pH = 3 for the ternary system. In order to optimize the effectiveness of the composite photocatalyst on the photocatalytic reduction of Cr(VI), kinetics and isotherm models were applied. The kinetics of Cr(VI) in the presence of dye on TiO2/zeolite composite photocatalyst followed the pseudo-first-order model while the equilibrium data correlated reasonably well with Freundlich isotherm.展开更多
Photocatalyst CoPcS/TiO2 was prepared by sol-gel method. Composite CoPcS/TiO2/K2Ti4O9 was prepared by dipping. It was incandesced at various temperatures and modification effect was compared. The results showed that o...Photocatalyst CoPcS/TiO2 was prepared by sol-gel method. Composite CoPcS/TiO2/K2Ti4O9 was prepared by dipping. It was incandesced at various temperatures and modification effect was compared. The results showed that optical absorption of sample incandesce at 423K occurred significant red-shift. Light absorption width extended from ultraviolet region to visible region, especially there was an intensive absorption between 600 nm and 680 nm. X-ray diffraction spectrogram showed that TiO2 in sample still maintained anatase crystal form. Under the illumination of visible light, photocatalysis degradation experiment was taken with Eosin B as simulated pollutants. Decoloration rate of Eosin B was much improved. The rate can reach 80% in 300 minutes.展开更多
A ternary composite of TiO2 and a SiO2-Al2O3 aerogel with good photocatalytic activity was prepared by a simple sol-gel method with TiO2 nanoparticles and SiO2-Al2O3 aerogels derived from industrial fly ash.The struct...A ternary composite of TiO2 and a SiO2-Al2O3 aerogel with good photocatalytic activity was prepared by a simple sol-gel method with TiO2 nanoparticles and SiO2-Al2O3 aerogels derived from industrial fly ash.The structural features of the TiO2/SiO2-Al2O3 aerogel composite were investigated by X-ray powder diffraction,Fourier transform infrared spectroscopy,transmission electron microscopy,gas adsorption measurements and diffuse reflectance UV-visible spectroscopy.The optimal conditions for photocatalytic degradation of 2-sec-butyl-4,6-dinitrophenol(DNBP],included an initial DNBP concentration of 0.167 mmol/L at pH = 4.86 with a catalyst concentration of 6 g/L,under visible light irradiation for 5 h.A plausible mechanism is proposed for the photocatalytic degradation of DNBP.Our composite showed higher photocatalytic activity for DNBP degradation than that of pure TiO2.This indicates that this material can serve as an efficient photocatalyst for degradation of hazardous organic pollutants in wastewater.展开更多
We report the fabrication and photocatalytic property of a composite of C/CaFe2O4nanorods(NRs)in an effort to reveal the influence of carbon modification.It is demonstrated that the photocatalytic degradation activity...We report the fabrication and photocatalytic property of a composite of C/CaFe2O4nanorods(NRs)in an effort to reveal the influence of carbon modification.It is demonstrated that the photocatalytic degradation activity is dependent on the mass ratio of C to CaFe2O4.The optimal carbon content is determined to be58wt%to yield a methylene blue(MB)degradation rate of0.0058min.1,which is4.8times higher than that of the pristine CaFe2O4NRs.The decoration of carbon on the surface of CaFe2O4NRs improves its adsorption capacity of the MB dye,which is specifically adsorbed on the surface as a monolayer according to the adsorption isotherm analysis.The trapping experiments of the reactive species indicate that superoxide radicals(.O2)are the main active species responsible for the removal of MB under visible‐light irradiation.Overall,the unique feature of carbon coating enables the efficient separation and transfer of photogenerated electrons and holes,strengthens the adsorption capacity of MB,and improves the light harvesting capability,hence enhancing the overall photocatalytic degradation of MB.展开更多
A nanoheterojunction composite photocatalyst Bi2O3/TiO2 working under visible-light (λ≥ 420 nm) was prepared by combining two semiconductors Bi2O3 and TiO2 varying the Bi2O3/TiO2 molar ratio. Maleic acid was emplo...A nanoheterojunction composite photocatalyst Bi2O3/TiO2 working under visible-light (λ≥ 420 nm) was prepared by combining two semiconductors Bi2O3 and TiO2 varying the Bi2O3/TiO2 molar ratio. Maleic acid was employed as an organic binder to unite Bi2O3 and TiO2 nanoparticles. The SEM, TEM, XRD and diffuse reflectance spectra were utilized to characterize the prepared Bi2O3/TiO2 nanoheterojunction. The nanocomposite exhibited unusual high photocatalytic activity in decomposing 2-propanol in gas phase and phenol in aqueous phase and, evolution of CO2 under visible light irradiation while the end members exhibited low photocatalytic activity. The composite was optimized to 5 mol% Bi2O3/TiO2. The remarkable high photocatalytic efficiency originates from the unique relative energy band position of Bi2O3 and TiO2 as well as the absorption of visible light by Bi2O3.展开更多
ZnFe2O4-BiOC1 composites were prepared by both hydrothermal and direct precipitation processes and the structures and properties of the samples were characterized by various instrumental techniques. The samples were t...ZnFe2O4-BiOC1 composites were prepared by both hydrothermal and direct precipitation processes and the structures and properties of the samples were characterized by various instrumental techniques. The samples were then used as catalysts for the photocatalytic reduction of CQ in cyclohexanol under ultraviolet irradiation to give cyclohexanone (CH) and cyclohexyl formate (CF). The photocatalytic CO2 reduction activities over the hydrothermally prepared ZnFeaO4-BiOCl composites were higher than those over the directly-precipitated composites. This is because compared to the direct-precipitation sample, the ZnFe2O4 nanoparticles in the hydrothermal sample were smaller and more uniformly distributed on the surface of BiOCl and so more heterojunctions were formed. Higher CF and CH yields were obtained for the pure BiOCl and BiOCl composite samples with more exposed (001) facets than for the samples with more exposed (010) facets. This is due to the higher density of oxygen atoms in the exposed (001) facets, which creates more oxygen vacancies, and thereby improves the separation efficiency of the electron-hole pairs. More importantly, irradiation of the (001) facets with ultraviolet light produces photo-generated electrons which is helpful for the reduction of CO2 to -CO2^-. The mechanism for the photocatalytic reduction of CO2 in cyclohexanol over ZnFe204-BiOCl composites with exposed (001) facets involves electron transfer and carbon radical formation.展开更多
Development of highly efficient photocatalysts has emerged as a research hotspot because of their crucial role in affecting the conversion efficiency of solar energy for applications in resource exploitation and envir...Development of highly efficient photocatalysts has emerged as a research hotspot because of their crucial role in affecting the conversion efficiency of solar energy for applications in resource exploitation and environmental purification.The photocatalytic performance of the photocatalysts basically depends on the behaviors of light absorption,charge generation and separation,surface property and structural stability.Owing to its unique advantages(high surface area,tunable porosity,modifiable surface),porous silica provides an interesting platform to construct well-defined nanostructures such as core-shell,yolk-shell and other specific structures which effectively improved one or more of the above behaviors for photocatalysis.Typically,the structure with hollow morphology favors the light scattering and enlargement of surface area,while coating or binding with silica can modify the surface property of a photocatalyst to enhance the surface adsorption of reactants and physicochemical stability of catalysts.This review discusses the recent advances in the design,synthesis,formation mechanism of well-defined silica-based nanostructures,and the achievements of desired physicochemical properties for regulating the photocatalytic performance.展开更多
文摘Graphene(GR),a single‐layer carbon sheet with a hexagonal packed lattice structure,has displayed attractive potential and demonstrably become the research focus in artificial photocatalysis due to its enchanting properties in enhancing light absorption,electron transfer dynamics,and surface reactions.Currently,numerous efforts have shown that the properties of GR,which are closely correlated to the photocatalytic performance of GR‐based composites are significantly affected by the synthesis methods.Herein,we first introduce the optimization strategies of GR‐based hybrids and then elaborate the synthesis of GR‐based composite photocatalysts oriented by manifold roles of GR in photoredox catalysis,containing photoelectron mediator and acceptor,improving adsorption capacity,regulating light absorption range and intensity,as well as macromolecular photosensitizer.Beyond that,a brief outlook on the challenges in this burgeoning research field and potential evolution strategies for enhancing the photoactivity of GR‐based hybrids is presented and we anticipate that this review could provide some enlightenments for the rational construction and application of multifunctional GR‐based composite photocatalysts.
基金the National High-Tech Research and Development Program of China (No. 2007AA03Z337)the Heilongjiang Science Fund for Distinguished Young Scholars (No. JC200615)the Technical Cooperation Project of Harbin with Russia(No.2006AA4BE053).
文摘A series of CdxZn1-xS (x = 0.1-0.9) photocatalysts were prepared by coprecipitation. They could form solid solution semiconductors with hexagonal phase in agreement with pure CdS by characterization of XRD. The photophysical properties of CdxZn1-xS photocatalysts were measured by UV-Vis diffuse reflectance spectrum and surface photovoltage spectroscopy (SPS). The band gap energy gradually reduced with the increasing of x value in CdxZn1-xS,and when x = 0.7,the Cd0.7Zn0.3S photocatalyst had the strongest sur...
基金This work was supported by the Opening Project of the Key Laboratory of Green Chemistry of Sichuan Institutes of Higher Education(LZJ2002)the Open Project of Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province(CSPC2016-3-2).
文摘AgCl/Ti_(3)C_(2)@TiO_(2)ternary composites were prepared to form a heterojunction structure between AgCl and TiO_(2)and introduce Ti3C2 as a cocatalyst.The as-prepared AgCl/Ti_(3)C_(2)@TiO_(2)composites showed higher photocatalytic activity than pure AgCl and Ti_(3)C_(2)@TiO_(2)for photooxidation of a 1,4-dihydropyridine derivative(1,4-DHP)and tetracycline hydrochloride(TCH)under visible light irradiation(λ>400 nm).The photocatalytic activity of AgCl/Ti_(3)C_(2)@TiO_(2)composites depended on Ti_(3)C_(2)@TiO_(2)content,and the catalytic activity of the optimized samples were 6.9 times higher than that of pure AgCl for 1,4-DHP photodehydrogenation and 7.3 times higher than that of Ti_(3)C_(2)@TiO_(2)for TCH photooxidation.The increased photocatalytic activity was due to the formation of a heterojunction structure between AgCl and TiO_(2)and the introduction of Ti3C2 as a cocatalyst,which lowered the internal resistance,sped up the charge transfer,and increased the separation efficiency of photogenerated carries.Photogenerated holes and superoxide radical anions were the major active species in the photocatalytic process.
基金financially supported by the National Natural Science Foundation of China (No.22376051)the China Postdoctoral Science Foundation (Nos.2021T140512 and 2020M680869)the Natural Science Foundation of Hebei Province (No.B2021202001)。
文摘Photocatalysis as an emerging "green" energy conversion technology has attracted domestic and international attention.This technology uses semiconductor photocatalysts to convert solar energy into directly usable chemical energy,showing great potential for application in environmental pollutant purification and clean energy production,with broad development prospects.Among many semiconductor materials,tungsten trioxide(WO_(3)) is favored by researchers in the field of photocatalysis because of its good visible light response and excellent valence band hole oxidation properties.Currently,a large number of photocatalysts based on WO_(3),in particular W03-based composite photocatalysts,have been reported,and their applications cover a wide range of fields.In order to promote the development of WO_(3)-based photocatalysts and provide a reference for colleagues,we present a systematic summary of the applications and research progress of W03-based composites in the field of photocatalysis in recent years.Starting from the structural properties of WO_(3)itself,this article summarizes the preparation methods and structure-activity relationships of WO_(3)-based composite photocatalysts.Subsequently,it introduces the current application status of existing WO_(3)-based composite photocatalysts in CO_(2) reduction,hydrogen production,nitrogen fixation,and pollutant removal.Finally,the development prospects were analyzed.
基金financially supported by the National Natural Science Foundation of China (U1305242 and 21673043)
文摘As an ideal solution to energy and environment issues,conversion of sunlight into solar fuels by photocatalytic water splitting and greenhouse gas(CO_2)reduction has attracted keen research interest of multi-field scientists.In the past four decades,a large number of semiconductor photocatalysts have been
基金Financial supports from the Project Supported by the Natural Science Foundation of the Jiangsu Province Higher Education Institutions of China(09KJD150002)Project Supported by the Graduate Innovation Program Foundation of the Jiangsu Province Higher Education Institutions of China(CXLX_0570)
文摘A series of carbon nanotubes/TiO2 nanotubes (CNTs/TNTs) composite photocatalysts were successfully prepared by incorporation of CNTs in HNO3 washing process. These photocatalysts were characterized by XRD, N2 physical adsorption, UV-vis diffuse reflectance spectroscopy, TEM and Raman spectroscopy, respectively, and their photocatalytic activities were tested by using methyl orange (MO) as a model compound. Also, the effects of amount of CNTs incorporated, calcination temperature and amount of catalyst on the photocatalytic activity of the composite photocatalyst were systematically investigated. The results show that the CNTs/TNTs composite exhibits much higher photocatalytic activity than that of the TNTs or CNTs alone.
基金Project supported by the National Natural Science Foundation of China(No. 29977003, 20507011)the State Ministry of Education of China(No. 00028)
文摘TiO2 and montmorillonite composite photocatalysts were prepared and applied in degrading γ-hexachlorocyclohexane (γ-HCH) in soils. After being spiked with γ-HCH, soil samples loaded with the composite photocatalysts were exposed to UV-light irradiation. The results indicated that the photocatalytic activities of the composite photocatalysts varied with the content of TiO2 in the order of 10%〈70%〈50% 〈30%, Moreover, the photocatalytic activity of the composite photocatalysts with TiO2 content 30% was higher than that of the pure P25 with the same mass of TiO2. The strong adsorption capacity of the composite photocatalysts and quantum size effect may contribute to its increased photocatalytic activities. In addition, effect of dosage of composite photocatalysts and soil pH on γ-HCH photodegradation was investigated. Pentachlorocyclohexene, trichlorocyclohexene, and dichlorobenzene were detected as photodegradation intermediates, which were gradually degraded with the photodegradation evolution.
文摘Er-doped BiVO4 composite photocatalyst was hydrothermal synthesized and characterized by X-ray powder diffraction, scanning electron microscopy, energy-dispersive X-ray Spectroscopy, X-ray photoelectron spectroscopy, and UV-Vis diffuse reflectance spectra techniques. The activity of the catalyst was determined by oxidative decomposition of methyl orange in aqueous solution under visible-light irradiation. X-ray photoelectron spectroscopy and energy-dispersive X-ray Spectroscopy analysis revealed that the doped Er existed in the form of Er2O3. It also showed that the Er doping can enhance the visible-light absorption abilities of catalysts and their visible-light-driven photocatalytic activities in comparison with those of pure BiVO4.
文摘Polyaniline (PAn) sensitized nanocrystalline TiO2 composites (TiO2/PAn) were successfully prepared and used as an efficient photocatalyst for the degradation of dye methylene blue (MB). The results showed that PAn was able to sensitize TiO2 efficiently and the composite photocatalyst could be activated by absorbing both the ultraviolet and visible light (λ: 190 ~ 800 nm), whereas pure TiO2 absorbed ultraviolet light only (λ 〈 380 nm). Under the irradiation of natural light, MB could be degraded more efficiently on the TiO2/PAn composites than on the TiO2 Furthermore, it could be easily separated from the solution by simple sedimentation.
文摘Simultaneously utilizing photogenerated electrons and holes to convert renewable biomass and its derivatives into corresponding value‐added products and hydrogen(H_(2))is a promising strategy to deal with the energy and environmental crisis.Herein,we report a facile hydrothermal method to construct a direct Z‐scheme CdS/WO_(3) binary composite for photocatalytic coupling redox reaction,simultaneously producing H_(2) and selectively converting aromatic alcohols into aromatic aldehydes in one pot.Compared with bare CdS and WO_(3),the CdS/WO_(3) binary composite exhibits significantly enhanced performance for this photocatalytic coupled redox reaction,which is ascribed to the ex‐tended light harvesting range,efficient charge carrier separation rate and optimized redox capabil‐ity of CdS/WO_(3) composite.Furthermore,the feasibility of converting various aromatic alcohols to corresponding aldehydes coupled with H_(2) evolution on the CdS/WO_(3) photocatalyst is proved and a reasonable reaction mechanism is proposed.It is hoped that this work can provide a new insight into the construction of direct Z‐scheme photocatalysts to effectively utilize the photogenerated electrons and holes for photocatalytic coupled redox reaction.
基金This project was financially supported by Specialized Research Fund for the Doctoral Program of Higher Education (No. 20050225006)the National Natural Science Foundation of China (No. 30400339).
文摘A high active novel TiO2/AC composite photocatalyst was prepared and used for phenol degradation. It was much more active than P-25 and exhibiting good decantability, less deactivation after several runs and less sensitive to pH change. Diffuse reflectance spectra (DRS) revealed that the electronic change in TiO2 did not occur by the addition of AC. Results of SEM and XRD suggested that better TiO2 distribution can be achieved when optimal AC content was adopted. The performance of the prepared TiO2/5AC catalyst revealed great practical potential in wastewater treatment field.
基金This work was supported by the National Natural Science Foundation of China(Grants No.91647206,51779079,51579073,and 51979137)the Fundation for Innovation Research Groups of the National Natural Science Fundation of China(Grant No.51421006).
文摘The long-standing popularity of semiconductor photocatalysis,due to its great potential in a variety of applications,has resulted in the creation of numerous semiconductor photocatalysts,and it stimulated the development of various characterization methods.In this study,Fe_(2)O_(3)/Bi_(2)WO_(6)composite with a flower-like microsphere and hierarchical structure was synthesized with the facile hydrothermal-impregnation method without any surfactants.X-ray diffraction(XRD),scanning electron microscopy(SEM),ultravioletevisible(UV-Vis)diffuse reflectance spectroscopy,and photoluminescence spectroscopy were used to characterize the structures of the samples.The specific surface area was estimated with the Brunauer-Emmett-Teller(BET)method,and pore size distribution was determined using the Barrett-Joyner-Halenda(BJH)method.The synthesized Fe_(2)O_(3)/Bi_(2)WO_(6)composite had an average diameter of approximately 4 nm,with smaller specific surface area and larger pore diameter than those of pristine Bi_(2)WO_(6).The results of XRD and SEM analyses confirmed that the composite was composed of Fe_(2)O_(3)and Bi_(2)WO_(6).The absorption edge of Bi_(2)WO_(6)was at a wavelength of 460 nm.By contrast,the absorption edge of Fe_(2)O_(3)/Bi_(2)WO_(6)to visible light was redshifted to 520 nm,with narrower bandgap width and stronger visible light response.It was also found that the main active substances in the degradation of microcystin-LR(MC-LR)were hydroxyl radicals(·OH)and electron holes(h^(+)).Consequently,the results further showed that the heterojunction between Fe_(2)O_(3)and Bi_(2)WO_(6)can improve the charge transfer rate and effectively separate the photoinduced electrons and holes.Compared with Bi_(2)WO_(6),Fe_(2)O_(3)/Bi_(2)WO_(6)had no significant difference in the adsorption capacity of MC-LR and had more efficient photocatalytic degradation activity of MC-LR.The degradation rates of MC-LR by Fe_(2)O_(3)/Bi_(2)WO_(6)and Bi_(2)WO_(6)reached 80%and 56%,respectively.The degradation efficiency of MC-LR was affected by the initial pH value,initial Fe_(2)O_(3)/Bi_(2)WO_(6)concentration,and initial MC-LR concentration.
基金supported by the National Natural Science Foundation of China(51534005)Postdoctoral Innovative Talent Support Program(BX20190200)China Postdoctoral Science Foundation(2020M671129)。
文摘The ever-increasing quantity of spent lithium-ion batteries(LIBs)is both a potential environmental pollutant and a valuable resource.The spent LIBs recycling mainly aimed at the separation of valuable elements.Some issues still exist in these processes such as high energy consumption and complex separation procedures.This study avoided element separation and proposed a facile approach to transform spent LiCoO_(2) electrode into a lithium(Li)-doped graphitic carbon nitride(g-C_(3)N_(4))/Co_(3)O_(4) composite photocatalyst through one-pot in situ thermal reduction.During the thermal process,melamine served as the reductant for LiCoO_(2) decomposition and the raw material for g-C_(3)N_(4) production.Li was in situ doped in g-C_(3)N_(4) and the generated Co_(3)O_(4) was in situ integrated,forming a Li-doped g-C_(3)N_(4)/Co_(3)O_(4) composite photocatalyst.This special composite exhibited an enhanced photocatalytic performance,and its photocatalytic H2 production and RhB degradation rates were 8.7 and 6.8 times higher than those of g-C_(3)N_(4).The experiments combined with DFT calculation revealed that such enhanced photocatalytic efficiency was ascribed to the synergy effect of Li doping and Co_(3)O_(4) integrating,which extended the visible light absorption(450-900 nm)and facilitated the charge transfer and separation.This study transforms waste into a high-efficient catalyst,realizing high-valued utilization of waste and environmental protection.
文摘The photocatalytic properties of surface TiO2 supported zeolite in a semi batch reactor for the reduction of Cr(VI) in the presence of methyl orange dye were investigated. The prepared composite photocatalyst was characterized by SEM-EDS (scanning electron microscopy and energy dispersive spectroscopy). The effects of operating parameters such as the pH and concentration of Cr(VI) in the absence and presence of dye were evaluated. The Cr(VI) reduction was more efficient in the ternary system (Cr(VI)/dye/TiO2-zeolite) than that of the corresponding binary system (Cr(VI)/TiO2-zeolite). The extent of metal reduction after 210 min of irradiation was 68% at pH = 3 for the ternary system. In order to optimize the effectiveness of the composite photocatalyst on the photocatalytic reduction of Cr(VI), kinetics and isotherm models were applied. The kinetics of Cr(VI) in the presence of dye on TiO2/zeolite composite photocatalyst followed the pseudo-first-order model while the equilibrium data correlated reasonably well with Freundlich isotherm.
基金Acknowledgements: This project is supported by the fund of the Plan of Postgraduate Scientific Research Innovation of Jiangsu Province (No. CX07B_175z) and the Natural Science Foundation of Henan Province (No. 0624720029).
文摘Photocatalyst CoPcS/TiO2 was prepared by sol-gel method. Composite CoPcS/TiO2/K2Ti4O9 was prepared by dipping. It was incandesced at various temperatures and modification effect was compared. The results showed that optical absorption of sample incandesce at 423K occurred significant red-shift. Light absorption width extended from ultraviolet region to visible region, especially there was an intensive absorption between 600 nm and 680 nm. X-ray diffraction spectrogram showed that TiO2 in sample still maintained anatase crystal form. Under the illumination of visible light, photocatalysis degradation experiment was taken with Eosin B as simulated pollutants. Decoloration rate of Eosin B was much improved. The rate can reach 80% in 300 minutes.
基金supported by the National Natural Science Foundation of China(21377018)the Natural Science Foundation of Liaoning Province of China(2013020116)the Fundamental Research Funds for the Central Universities(DUT15ZD240)~~
文摘A ternary composite of TiO2 and a SiO2-Al2O3 aerogel with good photocatalytic activity was prepared by a simple sol-gel method with TiO2 nanoparticles and SiO2-Al2O3 aerogels derived from industrial fly ash.The structural features of the TiO2/SiO2-Al2O3 aerogel composite were investigated by X-ray powder diffraction,Fourier transform infrared spectroscopy,transmission electron microscopy,gas adsorption measurements and diffuse reflectance UV-visible spectroscopy.The optimal conditions for photocatalytic degradation of 2-sec-butyl-4,6-dinitrophenol(DNBP],included an initial DNBP concentration of 0.167 mmol/L at pH = 4.86 with a catalyst concentration of 6 g/L,under visible light irradiation for 5 h.A plausible mechanism is proposed for the photocatalytic degradation of DNBP.Our composite showed higher photocatalytic activity for DNBP degradation than that of pure TiO2.This indicates that this material can serve as an efficient photocatalyst for degradation of hazardous organic pollutants in wastewater.
基金supported by the National Natural Science Foundation of China(21503100)Natural Science Foundation of Jiangxi Province(20161BAB213071,20151BAB213010)+1 种基金Project of Education Department of Jiangxi Province(GJJ150325)Sponsored Program for Cultivating Youths of Outstanding Ability in Jiangxi Normal University~~
文摘We report the fabrication and photocatalytic property of a composite of C/CaFe2O4nanorods(NRs)in an effort to reveal the influence of carbon modification.It is demonstrated that the photocatalytic degradation activity is dependent on the mass ratio of C to CaFe2O4.The optimal carbon content is determined to be58wt%to yield a methylene blue(MB)degradation rate of0.0058min.1,which is4.8times higher than that of the pristine CaFe2O4NRs.The decoration of carbon on the surface of CaFe2O4NRs improves its adsorption capacity of the MB dye,which is specifically adsorbed on the surface as a monolayer according to the adsorption isotherm analysis.The trapping experiments of the reactive species indicate that superoxide radicals(.O2)are the main active species responsible for the removal of MB under visible‐light irradiation.Overall,the unique feature of carbon coating enables the efficient separation and transfer of photogenerated electrons and holes,strengthens the adsorption capacity of MB,and improves the light harvesting capability,hence enhancing the overall photocatalytic degradation of MB.
文摘A nanoheterojunction composite photocatalyst Bi2O3/TiO2 working under visible-light (λ≥ 420 nm) was prepared by combining two semiconductors Bi2O3 and TiO2 varying the Bi2O3/TiO2 molar ratio. Maleic acid was employed as an organic binder to unite Bi2O3 and TiO2 nanoparticles. The SEM, TEM, XRD and diffuse reflectance spectra were utilized to characterize the prepared Bi2O3/TiO2 nanoheterojunction. The nanocomposite exhibited unusual high photocatalytic activity in decomposing 2-propanol in gas phase and phenol in aqueous phase and, evolution of CO2 under visible light irradiation while the end members exhibited low photocatalytic activity. The composite was optimized to 5 mol% Bi2O3/TiO2. The remarkable high photocatalytic efficiency originates from the unique relative energy band position of Bi2O3 and TiO2 as well as the absorption of visible light by Bi2O3.
基金This work was financially supported by the National Natural Science Foundation of China (Grant No. 21176192).
文摘ZnFe2O4-BiOC1 composites were prepared by both hydrothermal and direct precipitation processes and the structures and properties of the samples were characterized by various instrumental techniques. The samples were then used as catalysts for the photocatalytic reduction of CQ in cyclohexanol under ultraviolet irradiation to give cyclohexanone (CH) and cyclohexyl formate (CF). The photocatalytic CO2 reduction activities over the hydrothermally prepared ZnFeaO4-BiOCl composites were higher than those over the directly-precipitated composites. This is because compared to the direct-precipitation sample, the ZnFe2O4 nanoparticles in the hydrothermal sample were smaller and more uniformly distributed on the surface of BiOCl and so more heterojunctions were formed. Higher CF and CH yields were obtained for the pure BiOCl and BiOCl composite samples with more exposed (001) facets than for the samples with more exposed (010) facets. This is due to the higher density of oxygen atoms in the exposed (001) facets, which creates more oxygen vacancies, and thereby improves the separation efficiency of the electron-hole pairs. More importantly, irradiation of the (001) facets with ultraviolet light produces photo-generated electrons which is helpful for the reduction of CO2 to -CO2^-. The mechanism for the photocatalytic reduction of CO2 in cyclohexanol over ZnFe204-BiOCl composites with exposed (001) facets involves electron transfer and carbon radical formation.
基金supported by the National Natural Science Foundation of China(21771070 and 21571071)the Fundamental Research Funds for the Central Universities(2018KFYYXJJ120 and 2019KFYRCPY104)。
文摘Development of highly efficient photocatalysts has emerged as a research hotspot because of their crucial role in affecting the conversion efficiency of solar energy for applications in resource exploitation and environmental purification.The photocatalytic performance of the photocatalysts basically depends on the behaviors of light absorption,charge generation and separation,surface property and structural stability.Owing to its unique advantages(high surface area,tunable porosity,modifiable surface),porous silica provides an interesting platform to construct well-defined nanostructures such as core-shell,yolk-shell and other specific structures which effectively improved one or more of the above behaviors for photocatalysis.Typically,the structure with hollow morphology favors the light scattering and enlargement of surface area,while coating or binding with silica can modify the surface property of a photocatalyst to enhance the surface adsorption of reactants and physicochemical stability of catalysts.This review discusses the recent advances in the design,synthesis,formation mechanism of well-defined silica-based nanostructures,and the achievements of desired physicochemical properties for regulating the photocatalytic performance.