In spray atomization and codeposition, a molten stream of metal is disintegrated into a fine dispersion of droplets by high velocity gas jets. The resulting semi-solidified droplets are directed towards a substrate wh...In spray atomization and codeposition, a molten stream of metal is disintegrated into a fine dispersion of droplets by high velocity gas jets. The resulting semi-solidified droplets are directed towards a substrate where they impact and collect as rapidly solidified splats. Relatively high rates of solidification are achieved as a result of the thinness of the splats and the rapid heat extraction during flight and upon impacting with the substrate. The processing method uses codeposition of the metallic semi-solidified droplets (metallic matrix) with the injected reinforcement ceramic particles. In the present paper, the microstructures, mechanical properties, interfacial properties, thermal stability and aging behaviour of spray atomized and codeposited Al-Li-X MMC's (injected X=SiC, Al2O3) are reported and correlated to the processing conditions.展开更多
In terms of lightweight electromagnetic interference(EMI)shielding structural materials,Mg matrix materials have proven to be the best,due to their exciting properties(e.g.low density,high specific strength,good elect...In terms of lightweight electromagnetic interference(EMI)shielding structural materials,Mg matrix materials have proven to be the best,due to their exciting properties(e.g.low density,high specific strength,good electrical conductivity and excellent EMI shielding properties)and their wide range of applications in lightweighting in electronics,automotive and aerospace industries.Through processing,such as alloying,heat treatment,plastic deformation and composite processing,Mg matrix materials can be obtained with tailorable properties which can play a key role in designing materials for EMI shielding.This work introduces an overview of the research on the EMI shielding properties of Mg matrix materials as well as their EMI shielding mechanisms over the past few decades,focused on the influence of alloying,heat treatment,plastic deformation and composite processing for the EMI shielding properties of Mg matrix materials.At the end,conclusions and future perspectives are provided.展开更多
Liners in wet ball mill for mineral processing industry must bear abrasive wear and corrosive wear, and consequently, the service life of the liner made from traditional materials, such as Hadfield steel and alloyed s...Liners in wet ball mill for mineral processing industry must bear abrasive wear and corrosive wear, and consequently, the service life of the liner made from traditional materials, such as Hadfield steel and alloyed steels, is typically less than ten months. Bimetal liner, made from high Cr white cast iron and carbon steel, has been successfully developed by using liquid-liquid composite lost foam casting process. The microstructure and interface of the composite were analyzed using optical microscope, SEM, EDX and XRD. Micrographs indicate that the boundary of bimetal combination regions is staggered like dogtooth, two liquid metals are not mixed, and the interface presents excellent metallurgical bonding state. After heat treatment, the composite liner specimens have shown excellent properties, including hardness 〉 61 HRC, fracture toughness ak 〉16.5 J.cm2 and bending strength 〉1,600 MPa. Wear comparison was made between the bimetal composite liner and alloyed steel liner in an industrial hematite ball mill of WISCO, and the results of eight-month test in wet grinding environment have proved that the service life of the bimetal composite liner is three times as long as that of the alloyed steel liner.展开更多
A NiP/TiO2 composite film on carbon steel was prepared by electroless plating and sol-gel composite process. An artificial neural network was applied to optimize the prepared condition of the composite film. Corrosion...A NiP/TiO2 composite film on carbon steel was prepared by electroless plating and sol-gel composite process. An artificial neural network was applied to optimize the prepared condition of the composite film. Corrosion behavior of the NiP/TiO2 composite film was investigated by polarization resistance measurement, anode polarization, ESEM (environmental scanning electron microscopy) and EIS (electrochemical impedance spectroscopy) measurements. Results showed that the NiP/ TiO2 composite film has a good corrosion resistance in 0.5mol/L H2SO4 solution. The element valence of the composite film was characterized by XPS (X-ray photoelectron spectroscopy) spectrum, and an anticorrosion mechanism of the composite film was discussed.展开更多
In situ TiB2 reinforced 6351 Al alloy composites were subjected to compression testing at strain rates and temperatures ranging from 0.001 to 10 s -1 and from 300 to 550?欲espectively,using Gleeble-1500D system.And t...In situ TiB2 reinforced 6351 Al alloy composites were subjected to compression testing at strain rates and temperatures ranging from 0.001 to 10 s -1 and from 300 to 550?欲espectively,using Gleeble-1500D system.And the associated microstructural transformations and instability phenomena were studied by observations of the optical and transmission electron microscope.The power dissipation efficiency and instability parameter were calculated following the dynamic material model and plotted with the temperature and logarithm of strain rate to obtain processing maps for strains of 0.2,0.4,and 0.6.The processing maps present the instability zones at higher strain rates.The result shows that with increasing strain,the instability zones enlarge.The microstructural examination shows that the interface separates even the particle cracks or aligns along the shear direction of the adiabatic shear band in the instability zones.Two domains of higher efficiencies correspond to dynamic recovery and dynamic recrystallization during the hot deformation.Using the processing maps,the optimum processing parameters of stain rates and temperatures can be chosen for effective hot deformation of TiB2/6351 composites.展开更多
A novel technique was developed for the preparation of Cu-15 wt pct Cr composite with high strength and conductivity. The composite powders with refined microstructure and curly lamellae strengthening phase was first ...A novel technique was developed for the preparation of Cu-15 wt pct Cr composite with high strength and conductivity. The composite powders with refined microstructure and curly lamellae strengthening phase was first prepared by mechanical milling in favorite milling time and then were hot hydrostatic extruded after pre-densification with sintering or hot pressing. It was shown that the extrusion densified the composite powders well and at the same time the chaos curled strengthening phase was aligned into lines and further deformed as strengthening ribbons. The deformation processed Cu-15 wt pct Cr composite prepared by this technique is of superior conductivity, strength and thermal stability.展开更多
[ Objectlve] The research aimed to study treatment effect of the pesticide wastewater by the composite process of biological active car- bon filter-fluid bed. [Method] The composite process of biological active carbon...[ Objectlve] The research aimed to study treatment effect of the pesticide wastewater by the composite process of biological active car- bon filter-fluid bed. [Method] The composite process of biological active carbon filter- fluid bed was applied to treat the mixed pesticide wastewater. The removal efficiencies of CODcr, BODs, NH3-N, SS and the influence factors were investigated. [ Result] The composite process had good treatment efficiency for pesticide wastewater. After running stably, the average removal rates of CODc,, BODs, NH3-N and SS were re- spectively 91.6%, 96.2%, 90.2% and 87.5%. All indices reached the third level cdteda specified in Comprehensive Standard of the Sewage Dis- charge (DB12/356-2008). [ Conclusionl The whole system operates reliably and simply, and provides a stable, convenient and economical solu- tion for deep treatment of the mixed pesticide wastewater.展开更多
Fe3O4@SiO2 core–shell composite nanoparticles were successfully prepared by a one-pot process. Tetraethyl-orthosilicate was used as a surfactant to synthesize Fe3O4@SiO2 core–shell structures from prepared Fe3O4 nan...Fe3O4@SiO2 core–shell composite nanoparticles were successfully prepared by a one-pot process. Tetraethyl-orthosilicate was used as a surfactant to synthesize Fe3O4@SiO2 core–shell structures from prepared Fe3O4 nanoparticles. The properties of the Fe3O4 and Fe3O4@SiO2 composite nanoparticles were studied by X-ray diffraction, transmission electron microscopy, energy dispersive spectroscopy, and Fourier transform infrared spectroscopy. The prepared Fe3O4 particles were approximately 12 nm in size, and the thickness of the SiO2 coating was approximately 4 nm. The magnetic properties were studied by vibrating sample magnetometry. The results show that the maximum saturation magnetization of the Fe3O4@SiO2 powder(34.85 A·m^2·kg^–1) was markedly lower than that of the Fe3O4 powder(79.55 A·m^2·kg^–1), which demonstrates that Fe3O4 was successfully wrapped by SiO2. The Fe3O4@SiO2 composite nanoparticles have broad prospects in biomedical applications; thus, our next study will apply them in magnetic resonance imaging.展开更多
The effect of composite agglomeration process(CAP) on fluoric iron concentrates sintering was investigated.The yield and quality of the sinter are greatly improved when using CAP assisted with heat airflow and enhanci...The effect of composite agglomeration process(CAP) on fluoric iron concentrates sintering was investigated.The yield and quality of the sinter are greatly improved when using CAP assisted with heat airflow and enhancing magnesium oxide(MgO) contents.For conventional sintering of fluoric iron concentrate,due to lower viscosity of binding phase and higher fluidity of liquid phase,the sinter is formed with large thin-walled holes and the strength of the sinter is deteriorated consequently.The novel process forms composite agglomerate in which acid pellets are embedded in basic sinter.The pellets are solid with interconnecting crystals of hematite(Fe2O3) and magnetic(Fe3O4).For basic sintering,after adding MgO,the viscosity of the melting phase increases and the fluidity decreases;and calcium and aluminum silico-ferrites and magnesium ferrite are formed with perfect crystals and good sintering microstructure.展开更多
With the aid of the latest fiber optic sensing technology parameters in the cure process of ther- mosetting resin-matrix composite, such as temperature, viscosity,void and residual stress, can be monitored entirely an...With the aid of the latest fiber optic sensing technology parameters in the cure process of ther- mosetting resin-matrix composite, such as temperature, viscosity,void and residual stress, can be monitored entirely and efficiently.In this paper, experiment results of viscosity measurement in composite cure process in autoclave using fiber optic sensors are presented. Based on the sensed information, a computer program is utilized to control the cure process. With this technology, the cure process becomes more apparent and controllable, which will greatly improve the cured products and reduce the cost.展开更多
A new technique for preparing TiO2 modified film on carbon steel was accomplished by electroless plating and sol-gel composite process. The artificial neural network was applied to optimize the preparing condition of ...A new technique for preparing TiO2 modified film on carbon steel was accomplished by electroless plating and sol-gel composite process. The artificial neural network was applied to optimize the preparing condition of TiO2 modified film. The optimized condition for forming TiO2 modified film on carbon steel was that NiP plating for 50 min, dip-coating times as 4, heat treatment time for 2 h, and the molar ratio of complexing agent and Ti(OC4HZ9)4 kept 1.5:1. The results showed that TiO2 modified film have good corrosion resistance. The result conformed that it is feasible to design the preparing conditions of TiO2 modified film by artificial neural network.展开更多
A new TiO2 modified film on carbon steel was prepared by electroless plating and sol gel composite process. An artificial neural net was used to optimize the preparing condition of the film. The optimized condition of...A new TiO2 modified film on carbon steel was prepared by electroless plating and sol gel composite process. An artificial neural net was used to optimize the preparing condition of the film. The optimized condition of the TiO2-modified film on carbon steel is as follows: plating time of NiP is 50 min, number of dip coating is 4, heat treatment time is 2 h, and the molar ratio of complexing reagent to Ti(OC4 H9)4 is 1.5 : 1. Corrosion behavior of carbon steel with coating was investigated by polarization resistance measurement, anode polarization, EIS and ESEM measurement. XPS was used to characterize the element valence of the modified film. Results show that carbon steel with TiO2 modified film has good corrosion resistance in 0.5 mol/L of H2SO4 solution and 0.5 mol/L of NaCl solution. It is also found that the preparing condition of forming TiO2-modified film can be obtained easily by the artificial neural net.展开更多
Membrane gas separation is one of the most promising technologies for the separation of carbon dioxide (CO2) from various gas streams. One application of this technology is the treatment of flue gases from combustio...Membrane gas separation is one of the most promising technologies for the separation of carbon dioxide (CO2) from various gas streams. One application of this technology is the treatment of flue gases from combustion processes for the purpose of carbon capture and storage. For this application, poly(ethylene oxide)-containing block copolymers such as Pebax or PolyActiveTM polymer are well suited. The thin-film composite membrane that is considered in this overview employs PolyActiveTM polymer as a selective layer material. The membrane shows excellent CO2 permeances of up to 4 m^3(STP).(m^2·h·bar)^-1 (1 bar = 105 Pa) at a carbon dioxide/nitrogen (CO2/N2) selectivity exceeding 55 at ambient temperature. The membrane can be manufactured reproducibly on a pilot scale and mounted into fiat-sheet membrane modules of different designs. The operating performance of these modules can be accurately predicted by specifically developed simulation tools, which employ single-gas permeation data as the only experimental input. The performance of membranes and modules was investigated in different pilot plant studies, in which flue gas and biogas were used as the feed gas streams. The investigated processes showed a stable separation performance, indicating the applicability of PolyActiveTM polymer as a membrane material for industrialscale gas processing.展开更多
Graphite-phase polymeric carbon nitride (CN) was reported to be a promising material in photoelectrochemical solar energy conversion. However, its high recombination rate of photogenerated carriers limits its potent...Graphite-phase polymeric carbon nitride (CN) was reported to be a promising material in photoelectrochemical solar energy conversion. However, its high recombination rate of photogenerated carriers limits its potential applications. In this article, a heterojunction of CN and sulfur-doped CN (CNS) was constructed through a solution-based processing way. Interestingly, it was observed that the photocatalytic hydrogen production of the as-prepared composite was 32.6 times higher than that of bulk carbon nitride and 2.3 times higher than that of the composites by conventional impregnating method. This study opens a new avenue to construct heterojunction of CN for large-scale industrial applications in environmental remediation.展开更多
Process regression models,such as Gaussian process regression model(GPR),have been widely applied to analyze kinds of functional data.This paper introduces a composite of two T-process(CT),where the first one captures...Process regression models,such as Gaussian process regression model(GPR),have been widely applied to analyze kinds of functional data.This paper introduces a composite of two T-process(CT),where the first one captures the smooth global trend and the second one models local details.TheCThas an advantage in the local variability compared to general T-process.Furthermore,a composite T-process regression(CTP)model is developed,based on the composite T-process.It inherits many nice properties as GPR,while it is more robust against outliers than GPR.Numerical studies including simulation and real data application show that CTP performs well in prediction.展开更多
Lithium ion batteries have achieved extensive applications in portable electronics and recently in electronic vehicles since its commercialization in 1990s.The vast applications of lithium ion batteries are not only d...Lithium ion batteries have achieved extensive applications in portable electronics and recently in electronic vehicles since its commercialization in 1990s.The vast applications of lithium ion batteries are not only derived from the innovation in electrochemistry based on emerging energy materials and chemical engineering science,but also the technological advances in the powder technologies for electrode processing and cell fabrication.Revealing the effects of powder technology on electrode microstructure evolution during electrode processing is with critical value to realize the superior electrochemical performance.This review presents the progress in understanding the basic principles of the materials processing technologies for electrodes in lithium ion batteries.The impacts of slurry mixing and coating,electrode drying,and calendering on the electrode characteristics and electrochemical performance are comprehensively analyzed.Conclusion and outlook are drawn to shed fresh lights on the further development of efficient lithium ion batteries by advancing powder technologies and related advanced energy materials.展开更多
Effect of distribution of iron concentrates between pelletized and matrix feed on the preparation of blast furnace burdens from two different kinds of fine iron concentrates (magnetite and hematite) by composite agglo...Effect of distribution of iron concentrates between pelletized and matrix feed on the preparation of blast furnace burdens from two different kinds of fine iron concentrates (magnetite and hematite) by composite agglomeration process (CAP) was explored. It was found that when the mass ratio of iron concentrate A (magnetite) to iron concentrate B (hematite) in the mixed feed was constant, the proportion of iron concentrate A in the pelletized and matrix feed significantly affected the quality of CAP products. Particularly, as the proportion of iron concentrate A in the pelletized feed increased from 0 to 100%, the yield decreased from 82.11% to 79.19% and the tumbler index decreased from 71.33% to 68.27%. The mineralization characterization results indicated that when 100% iron concentrate A was used as the pelletized feed, the crystallization styles of the outer layer and the inner layer of the pellet were different, and a lot of pores exist around hematite and magnetite phases in the pelletized part, with the weak connection of pelletized and matrix part, resulting in poor strength of agglomeration product.展开更多
Semisolid-rolling method was successfully developed to prepare the Ni-coated woven carbon fibers reinforced Al-matrix composite. Due to the appropriate matrix flowability and rolling pressure, the Al-matrix could infi...Semisolid-rolling method was successfully developed to prepare the Ni-coated woven carbon fibers reinforced Al-matrix composite. Due to the appropriate matrix flowability and rolling pressure, the Al-matrix could infiltrate into the woven fibers sufficiently and attach to the reinforcements closely forming a smooth interface. The rolling speed of 4 rad/min offered a subtle equilibrium between the heat transfer and the material deformation. The covering matrix should be controlled at semisolid state to provide a better infiltration behavior and a protective effect on the carbon fibers. With the addition of fibers, an improvement for more than 25% was obtained in the bending strength of the materials. Furthermore, the woven carbon fibers could strengthen the composite in multiple directions, rather than only along the fiber longitudinal directions. The annealing process promoted the Ni coating to react with and to diffuse into the matrix, resulted in an obvious increase of the bending strength.展开更多
Anisotropic NdFeB/SmCoCuFeZr composite bonded magnets were prepared by warm compaction process. The effects of adding SmCoCuFeZr magnetic powder on the properties of anisotropic bonded NdFeB magnet were investigated i...Anisotropic NdFeB/SmCoCuFeZr composite bonded magnets were prepared by warm compaction process. The effects of adding SmCoCuFeZr magnetic powder on the properties of anisotropic bonded NdFeB magnet were investigated in this work. The results show that, both magnetic properties and temperature stability of the bonded magnet can be improved by adding fine SmCoCuFeZr magnetic powder. In the present study, the optimal content of SmCoCuFeZr magnetic powder was about 20 wt.%, in this case, the Br, Hcj, and(BH)maxof the NdFeB/SmCoCuFeZr composite magnet achieved 0.943 T, 1250 kA/m, and168 kJ/m^3, respectively.展开更多
文摘In spray atomization and codeposition, a molten stream of metal is disintegrated into a fine dispersion of droplets by high velocity gas jets. The resulting semi-solidified droplets are directed towards a substrate where they impact and collect as rapidly solidified splats. Relatively high rates of solidification are achieved as a result of the thinness of the splats and the rapid heat extraction during flight and upon impacting with the substrate. The processing method uses codeposition of the metallic semi-solidified droplets (metallic matrix) with the injected reinforcement ceramic particles. In the present paper, the microstructures, mechanical properties, interfacial properties, thermal stability and aging behaviour of spray atomized and codeposited Al-Li-X MMC's (injected X=SiC, Al2O3) are reported and correlated to the processing conditions.
基金supported by the National Natural Science Foundation of China(Nos.51871068,51771060,51971071,52011530025)Domain Foundation of Equipment Advance Research of 13th Five-year Plan,China(No.61409220118)+3 种基金the Fundamental Research Funds for the Central Universities,China(No.3072020CFT1006)the Fundamental Research Funds for the Heilongjiang Universities,China(No.2020-KYYWF-0532)PhD Student Research and Innovation Fund of the Fundamental Research Funds for the Central Universities,China(No.3072021GIP1002)Zhejiang Province Key Research and Development Plan,China(No.2021C01086)。
文摘In terms of lightweight electromagnetic interference(EMI)shielding structural materials,Mg matrix materials have proven to be the best,due to their exciting properties(e.g.low density,high specific strength,good electrical conductivity and excellent EMI shielding properties)and their wide range of applications in lightweighting in electronics,automotive and aerospace industries.Through processing,such as alloying,heat treatment,plastic deformation and composite processing,Mg matrix materials can be obtained with tailorable properties which can play a key role in designing materials for EMI shielding.This work introduces an overview of the research on the EMI shielding properties of Mg matrix materials as well as their EMI shielding mechanisms over the past few decades,focused on the influence of alloying,heat treatment,plastic deformation and composite processing for the EMI shielding properties of Mg matrix materials.At the end,conclusions and future perspectives are provided.
基金supported by the National Natural Science Foundation of China under grant No.50805109the Fundamental Research Funds for the Central Universities under grant No.2011-1a-023
文摘Liners in wet ball mill for mineral processing industry must bear abrasive wear and corrosive wear, and consequently, the service life of the liner made from traditional materials, such as Hadfield steel and alloyed steels, is typically less than ten months. Bimetal liner, made from high Cr white cast iron and carbon steel, has been successfully developed by using liquid-liquid composite lost foam casting process. The microstructure and interface of the composite were analyzed using optical microscope, SEM, EDX and XRD. Micrographs indicate that the boundary of bimetal combination regions is staggered like dogtooth, two liquid metals are not mixed, and the interface presents excellent metallurgical bonding state. After heat treatment, the composite liner specimens have shown excellent properties, including hardness 〉 61 HRC, fracture toughness ak 〉16.5 J.cm2 and bending strength 〉1,600 MPa. Wear comparison was made between the bimetal composite liner and alloyed steel liner in an industrial hematite ball mill of WISCO, and the results of eight-month test in wet grinding environment have proved that the service life of the bimetal composite liner is three times as long as that of the alloyed steel liner.
文摘A NiP/TiO2 composite film on carbon steel was prepared by electroless plating and sol-gel composite process. An artificial neural network was applied to optimize the prepared condition of the composite film. Corrosion behavior of the NiP/TiO2 composite film was investigated by polarization resistance measurement, anode polarization, ESEM (environmental scanning electron microscopy) and EIS (electrochemical impedance spectroscopy) measurements. Results showed that the NiP/ TiO2 composite film has a good corrosion resistance in 0.5mol/L H2SO4 solution. The element valence of the composite film was characterized by XPS (X-ray photoelectron spectroscopy) spectrum, and an anticorrosion mechanism of the composite film was discussed.
文摘In situ TiB2 reinforced 6351 Al alloy composites were subjected to compression testing at strain rates and temperatures ranging from 0.001 to 10 s -1 and from 300 to 550?欲espectively,using Gleeble-1500D system.And the associated microstructural transformations and instability phenomena were studied by observations of the optical and transmission electron microscope.The power dissipation efficiency and instability parameter were calculated following the dynamic material model and plotted with the temperature and logarithm of strain rate to obtain processing maps for strains of 0.2,0.4,and 0.6.The processing maps present the instability zones at higher strain rates.The result shows that with increasing strain,the instability zones enlarge.The microstructural examination shows that the interface separates even the particle cracks or aligns along the shear direction of the adiabatic shear band in the instability zones.Two domains of higher efficiencies correspond to dynamic recovery and dynamic recrystallization during the hot deformation.Using the processing maps,the optimum processing parameters of stain rates and temperatures can be chosen for effective hot deformation of TiB2/6351 composites.
文摘A novel technique was developed for the preparation of Cu-15 wt pct Cr composite with high strength and conductivity. The composite powders with refined microstructure and curly lamellae strengthening phase was first prepared by mechanical milling in favorite milling time and then were hot hydrostatic extruded after pre-densification with sintering or hot pressing. It was shown that the extrusion densified the composite powders well and at the same time the chaos curled strengthening phase was aligned into lines and further deformed as strengthening ribbons. The deformation processed Cu-15 wt pct Cr composite prepared by this technique is of superior conductivity, strength and thermal stability.
基金Supported by Science Technology Key Special Item of the National Water Pollution Control and Treatment,China(2008ZX07314001)
文摘[ Objectlve] The research aimed to study treatment effect of the pesticide wastewater by the composite process of biological active car- bon filter-fluid bed. [Method] The composite process of biological active carbon filter- fluid bed was applied to treat the mixed pesticide wastewater. The removal efficiencies of CODcr, BODs, NH3-N, SS and the influence factors were investigated. [ Result] The composite process had good treatment efficiency for pesticide wastewater. After running stably, the average removal rates of CODc,, BODs, NH3-N and SS were re- spectively 91.6%, 96.2%, 90.2% and 87.5%. All indices reached the third level cdteda specified in Comprehensive Standard of the Sewage Dis- charge (DB12/356-2008). [ Conclusionl The whole system operates reliably and simply, and provides a stable, convenient and economical solu- tion for deep treatment of the mixed pesticide wastewater.
基金the National Natural Science Foundation of China (No.51274039)the State Key Lab of Advanced Metals and Materials (No.2013-ZD05)the Guangdong Foundation of Research (No.2014B090901003)
文摘Fe3O4@SiO2 core–shell composite nanoparticles were successfully prepared by a one-pot process. Tetraethyl-orthosilicate was used as a surfactant to synthesize Fe3O4@SiO2 core–shell structures from prepared Fe3O4 nanoparticles. The properties of the Fe3O4 and Fe3O4@SiO2 composite nanoparticles were studied by X-ray diffraction, transmission electron microscopy, energy dispersive spectroscopy, and Fourier transform infrared spectroscopy. The prepared Fe3O4 particles were approximately 12 nm in size, and the thickness of the SiO2 coating was approximately 4 nm. The magnetic properties were studied by vibrating sample magnetometry. The results show that the maximum saturation magnetization of the Fe3O4@SiO2 powder(34.85 A·m^2·kg^–1) was markedly lower than that of the Fe3O4 powder(79.55 A·m^2·kg^–1), which demonstrates that Fe3O4 was successfully wrapped by SiO2. The Fe3O4@SiO2 composite nanoparticles have broad prospects in biomedical applications; thus, our next study will apply them in magnetic resonance imaging.
基金Project(50725416) supported by the National Science Fund for Distinguished Young Scholars
文摘The effect of composite agglomeration process(CAP) on fluoric iron concentrates sintering was investigated.The yield and quality of the sinter are greatly improved when using CAP assisted with heat airflow and enhancing magnesium oxide(MgO) contents.For conventional sintering of fluoric iron concentrate,due to lower viscosity of binding phase and higher fluidity of liquid phase,the sinter is formed with large thin-walled holes and the strength of the sinter is deteriorated consequently.The novel process forms composite agglomerate in which acid pellets are embedded in basic sinter.The pellets are solid with interconnecting crystals of hematite(Fe2O3) and magnetic(Fe3O4).For basic sintering,after adding MgO,the viscosity of the melting phase increases and the fluidity decreases;and calcium and aluminum silico-ferrites and magnesium ferrite are formed with perfect crystals and good sintering microstructure.
文摘With the aid of the latest fiber optic sensing technology parameters in the cure process of ther- mosetting resin-matrix composite, such as temperature, viscosity,void and residual stress, can be monitored entirely and efficiently.In this paper, experiment results of viscosity measurement in composite cure process in autoclave using fiber optic sensors are presented. Based on the sensed information, a computer program is utilized to control the cure process. With this technology, the cure process becomes more apparent and controllable, which will greatly improve the cured products and reduce the cost.
文摘A new technique for preparing TiO2 modified film on carbon steel was accomplished by electroless plating and sol-gel composite process. The artificial neural network was applied to optimize the preparing condition of TiO2 modified film. The optimized condition for forming TiO2 modified film on carbon steel was that NiP plating for 50 min, dip-coating times as 4, heat treatment time for 2 h, and the molar ratio of complexing agent and Ti(OC4HZ9)4 kept 1.5:1. The results showed that TiO2 modified film have good corrosion resistance. The result conformed that it is feasible to design the preparing conditions of TiO2 modified film by artificial neural network.
文摘A new TiO2 modified film on carbon steel was prepared by electroless plating and sol gel composite process. An artificial neural net was used to optimize the preparing condition of the film. The optimized condition of the TiO2-modified film on carbon steel is as follows: plating time of NiP is 50 min, number of dip coating is 4, heat treatment time is 2 h, and the molar ratio of complexing reagent to Ti(OC4 H9)4 is 1.5 : 1. Corrosion behavior of carbon steel with coating was investigated by polarization resistance measurement, anode polarization, EIS and ESEM measurement. XPS was used to characterize the element valence of the modified film. Results show that carbon steel with TiO2 modified film has good corrosion resistance in 0.5 mol/L of H2SO4 solution and 0.5 mol/L of NaCl solution. It is also found that the preparing condition of forming TiO2-modified film can be obtained easily by the artificial neural net.
基金funded by the Helmholtz Association of German Research Centersthe funding given by the German Federal Ministry for Economic Affairs and Energy to finance the research project METPORE Ⅱ (03ET2016)+2 种基金the METPORE Ⅱ project partnersSSC Strategic Science Consult GmbHBORSIG Membrane Technology GmbH
文摘Membrane gas separation is one of the most promising technologies for the separation of carbon dioxide (CO2) from various gas streams. One application of this technology is the treatment of flue gases from combustion processes for the purpose of carbon capture and storage. For this application, poly(ethylene oxide)-containing block copolymers such as Pebax or PolyActiveTM polymer are well suited. The thin-film composite membrane that is considered in this overview employs PolyActiveTM polymer as a selective layer material. The membrane shows excellent CO2 permeances of up to 4 m^3(STP).(m^2·h·bar)^-1 (1 bar = 105 Pa) at a carbon dioxide/nitrogen (CO2/N2) selectivity exceeding 55 at ambient temperature. The membrane can be manufactured reproducibly on a pilot scale and mounted into fiat-sheet membrane modules of different designs. The operating performance of these modules can be accurately predicted by specifically developed simulation tools, which employ single-gas permeation data as the only experimental input. The performance of membranes and modules was investigated in different pilot plant studies, in which flue gas and biogas were used as the feed gas streams. The investigated processes showed a stable separation performance, indicating the applicability of PolyActiveTM polymer as a membrane material for industrialscale gas processing.
基金financially supported in part by the National Natural Science Foundation of China(No. 21305065)Natural Science Foundation of Jiangsu Province(Nos. BK20160028, BK20170084)+1 种基金the Open Funds of the State Key Laboratory of Electroanalytical Chemistry (No. SKLEAC201703)the Fundamental Research Funds for the Central Universities
文摘Graphite-phase polymeric carbon nitride (CN) was reported to be a promising material in photoelectrochemical solar energy conversion. However, its high recombination rate of photogenerated carriers limits its potential applications. In this article, a heterojunction of CN and sulfur-doped CN (CNS) was constructed through a solution-based processing way. Interestingly, it was observed that the photocatalytic hydrogen production of the as-prepared composite was 32.6 times higher than that of bulk carbon nitride and 2.3 times higher than that of the composites by conventional impregnating method. This study opens a new avenue to construct heterojunction of CN for large-scale industrial applications in environmental remediation.
基金supported by National Natural Science Foundation of China(Grant No.11971457)Anhui Provincial Natural Science Foundation(Grant No.1908085MA06).
文摘Process regression models,such as Gaussian process regression model(GPR),have been widely applied to analyze kinds of functional data.This paper introduces a composite of two T-process(CT),where the first one captures the smooth global trend and the second one models local details.TheCThas an advantage in the local variability compared to general T-process.Furthermore,a composite T-process regression(CTP)model is developed,based on the composite T-process.It inherits many nice properties as GPR,while it is more robust against outliers than GPR.Numerical studies including simulation and real data application show that CTP performs well in prediction.
基金This work was supported by National Natural Science Foundation of China(Grant Nos.21805161,21808121,and 21825501)National Key Research and Development Program(Grant No.2016YFA0202500)+1 种基金China Post-Doctoral Science Foundation(Grant Nos.2020M670155 and 2020T130054)the Tsinghua University Initiative Scientific Research Program.
文摘Lithium ion batteries have achieved extensive applications in portable electronics and recently in electronic vehicles since its commercialization in 1990s.The vast applications of lithium ion batteries are not only derived from the innovation in electrochemistry based on emerging energy materials and chemical engineering science,but also the technological advances in the powder technologies for electrode processing and cell fabrication.Revealing the effects of powder technology on electrode microstructure evolution during electrode processing is with critical value to realize the superior electrochemical performance.This review presents the progress in understanding the basic principles of the materials processing technologies for electrodes in lithium ion batteries.The impacts of slurry mixing and coating,electrode drying,and calendering on the electrode characteristics and electrochemical performance are comprehensively analyzed.Conclusion and outlook are drawn to shed fresh lights on the further development of efficient lithium ion batteries by advancing powder technologies and related advanced energy materials.
基金supported by the National Natural Science Foundation of China under Grant U1960114,51774337,and U1660206the Open Sharing Fund for the Large-scale Instruments and Equipments of Central South University under Grant CSUZC201905the Fundamental Research Funds for the Central Universities of Central South University under Grant 2018zzts220.
文摘Effect of distribution of iron concentrates between pelletized and matrix feed on the preparation of blast furnace burdens from two different kinds of fine iron concentrates (magnetite and hematite) by composite agglomeration process (CAP) was explored. It was found that when the mass ratio of iron concentrate A (magnetite) to iron concentrate B (hematite) in the mixed feed was constant, the proportion of iron concentrate A in the pelletized and matrix feed significantly affected the quality of CAP products. Particularly, as the proportion of iron concentrate A in the pelletized feed increased from 0 to 100%, the yield decreased from 82.11% to 79.19% and the tumbler index decreased from 71.33% to 68.27%. The mineralization characterization results indicated that when 100% iron concentrate A was used as the pelletized feed, the crystallization styles of the outer layer and the inner layer of the pellet were different, and a lot of pores exist around hematite and magnetite phases in the pelletized part, with the weak connection of pelletized and matrix part, resulting in poor strength of agglomeration product.
基金supported by the National Natural Science Foundation of China (Nos. 51271042 and 51501027)the Fundamental Research Funds for the Central Universities, the Key Laboratory of Basic Research Projects of Liaoning Province Department of Education (No. LZ2014007)+1 种基金the Natural Science Foundation of Liaoning Province (No. 2014028013)China Postdoctoral Science Foundation (No. 2015M570246)
文摘Semisolid-rolling method was successfully developed to prepare the Ni-coated woven carbon fibers reinforced Al-matrix composite. Due to the appropriate matrix flowability and rolling pressure, the Al-matrix could infiltrate into the woven fibers sufficiently and attach to the reinforcements closely forming a smooth interface. The rolling speed of 4 rad/min offered a subtle equilibrium between the heat transfer and the material deformation. The covering matrix should be controlled at semisolid state to provide a better infiltration behavior and a protective effect on the carbon fibers. With the addition of fibers, an improvement for more than 25% was obtained in the bending strength of the materials. Furthermore, the woven carbon fibers could strengthen the composite in multiple directions, rather than only along the fiber longitudinal directions. The annealing process promoted the Ni coating to react with and to diffuse into the matrix, resulted in an obvious increase of the bending strength.
基金Project supported by the Natural Science Foundation of Jiangsu Province,China(BK20171408)the Graduate Student Innovation Foundation of Jiangsu Province(201711276005Z)Scientific Foundation of Nanjing Institute of Technology(CKJB201402,and YKJ201506)
文摘Anisotropic NdFeB/SmCoCuFeZr composite bonded magnets were prepared by warm compaction process. The effects of adding SmCoCuFeZr magnetic powder on the properties of anisotropic bonded NdFeB magnet were investigated in this work. The results show that, both magnetic properties and temperature stability of the bonded magnet can be improved by adding fine SmCoCuFeZr magnetic powder. In the present study, the optimal content of SmCoCuFeZr magnetic powder was about 20 wt.%, in this case, the Br, Hcj, and(BH)maxof the NdFeB/SmCoCuFeZr composite magnet achieved 0.943 T, 1250 kA/m, and168 kJ/m^3, respectively.