The seismic performance of a caisson structure under two types of models with a saturated sandy foundation(CSS)and an expanded polystyrene(EPS)composite soil foundation(CES)are studied using shaking table tests.The ma...The seismic performance of a caisson structure under two types of models with a saturated sandy foundation(CSS)and an expanded polystyrene(EPS)composite soil foundation(CES)are studied using shaking table tests.The macro phenomena of the two different foundation models are described and analyzed.The effects of the replacement of EPS composite soil on seismic-induced liquefaction of backfill and the dynamic performance of a caisson structure are evaluated in detail.The results show that the excess pore water pressure generation in the CES is significantly slower than that in the CSS during the shaking.The dynamic earth pressure acting on the caisson has a triangular shape.The response of horizontal acceleration,displacement,settlement,and rotation angle of the caisson in the CES is smaller than that in the CSS,which means the caisson in the CES has a better seismic performance.Furthermore,the out-of-phase phenomenon between dynamic earth thrust and inertial force in the CES is more obvious than that in the CSS,which is beneficial to reduce the lateral force and improve the stability of the caisson structure.展开更多
A complete case of a deep excavation was explored. According to the practical working conditions, a 3D non-linear finite element procedure is used to simulate a deep excavation supported by the composite soil nailed w...A complete case of a deep excavation was explored. According to the practical working conditions, a 3D non-linear finite element procedure is used to simulate a deep excavation supported by the composite soil nailed wall with bored piles in soft soil. The modified cam clay model is employed as the constitutive relationship of the soil in the numerical simulation. Results from the numerical analysis are fitted well with the field data, which indicate that the research approach used is reliable. Based on the field data and numerical results of the deep excavation supported by four different patterns of the composite soil nailed wall, the significant corner effect is founded in the 3D deep excavation. If bored piles or soil anchors are considered in the composite soil nailed wall, they are beneficial to decreasing deformations and internal forces of bored piles, cement mixing piles, soil anchors, soil nailings and soil around the deep excavation. Besides, the effects due to bored piles are more significant than those deduced from soil anchors. All mentioned above prove that the composite soil nailed wall with bored piles is feasible in the deep excavation.展开更多
In order to investigate the effect o f some factors on the unconfined compressive strength(UCS)for composite soil stabilizer-stabilized gravel soil(CSSSGS),the orthogonal test is adopted to set up the experimental sch...In order to investigate the effect o f some factors on the unconfined compressive strength(UCS)for composite soil stabilizer-stabilized gravel soil(CSSSGS),the orthogonal test is adopted to set up the experimental scheme.Three levels o f each factor armconsidered to obtain the change laws o f UCS,in which the binder dosages are8%,10%,and12%;the curing times ae7,14and21d;the gradation nae0.3,0.35and0.4;and the degrees of compaction are95%,97%,and99%.The range analysis clearly indicates that the influence degree o f the four factors on UCS is in such an order:dosage,age,gradation,and degree o f compaction.The variance analysis shows that only the composite soil stabilizer dosage can significantly affect UCS.In road construction,the examination o f composite soil stabilizer dosage and base-course maintenance should be given much more attention to obtain satisfactory base-course strength,compared w ith gradation floating and the change of degree o f compaction.展开更多
EPS composite soil is one type of premixed lightweight fills studied by numerous researchers, However, one aspect that has not been fully understood is the creep behaviors which may have significant effect on the desi...EPS composite soil is one type of premixed lightweight fills studied by numerous researchers, However, one aspect that has not been fully understood is the creep behaviors which may have significant effect on the design and application of EPS com- posite soil. In this paper, the results of a series of oedometer creep tests and triaxial undrained creep tests on EPS composite soil were presented. Four main influencing factors were identified and their effects on the creep behaviors of EPS composite soil were studied. Three well established creep models, namely, Findley model, Singh & Mitchell model, and Mesri model, were used to simulate the creep behavior of EPS composite soil. This study shows that the Findley creep model fits the test re- suits the best. A semi-empirical creep model was also proposed to model the creep behavior under axisymmetric conditions. In this model, the creep strain was divided into instant and viscous elastic strain as well as instant and viscous plastic strain which were simulated by element models and empirical equations, respectively. It was shown that the proposed creep model was able to precisely predict the creep strain of EPS composite soil.展开更多
Sulfamethoxzole (SMX) and trimethoprim (TMP), two combined-using sulfonamide antibiotics, have gained increasing attention in the surface water, groundwater and the drinking water because of the ecological risk. T...Sulfamethoxzole (SMX) and trimethoprim (TMP), two combined-using sulfonamide antibiotics, have gained increasing attention in the surface water, groundwater and the drinking water because of the ecological risk. The removal of TMP and SMX by artificial composite soil treatment system (ACST) with different infiltration rates was systematically investigated using K+, Na+, Ca2+, Mg2+ hydrogeochemical indexes. Batch experiments showed that the sorption onto the low-cost and commercially available clay ceramsites was effective for the removal of SMX and TMP from water. The column with more silty clay at high infiltration rate (1.394 m·d^-1) had removal rates of 80% to 90% for TMP and 60% to 70% for SMX. High SMX and TMP removal rates had a higher effluent concentration of K+, Ca2+ and Mg2+ and had a lower effluent Na+ concentration. Removal was strongly related to sorption. The results showed that the removal of SMX and TMP was related to hydrogeochemical processes. In this study, ACST is determined to be applicable to the drinking water plants.展开更多
Bidens pilosa is recognized as one of the major invasive plants in China.Its invasion has been associated with significant losses in agriculture,forestry,husbandry,and biodiversity.Soil ecosystems play an important ro...Bidens pilosa is recognized as one of the major invasive plants in China.Its invasion has been associated with significant losses in agriculture,forestry,husbandry,and biodiversity.Soil ecosystems play an important role in alien plant invasion.Microorganisms within the soil act as intermediaries between plants and soil ecological functions,playing a role in regulating soil enzyme activities and nutrient dynamics.Understanding the interactions between invasive plants,soil microorganisms,and soil ecological processes is vital for managing and mitigating the impacts of invasive species on the environment.In this study,we conducted a systematic analysis focusing on B.pilosa and Setaria viridis,a common native companion plant in the invaded area.To simulate the invasion process of B.pilosa,we constructed homogeneous plots consisting of B.pilosa and S.viridis grown separately as monocultures,as well as in mixtures.The rhizosphere and bulk soils were collected from the alien plant B.pilosa and the native plant S.viridis.In order to focus on the soil ecological functional mechanisms that contribute to the successful invasion of B.pilosa,we analyzed the effects of B.pilosa on the composition of soil microbial communities and soil ecological functions.The results showed that the biomass of B.pilosa increased by 27.51% and that of S.viridis was significantly reduced by 66.56%.The organic matter contents in the bulk and rhizosphere soils of B.pilosa were approximately 1.30 times those in the native plant soils.The TN and NO_(3)^(-)contents in the rhizosphere soil of B.pilosa were 1.30 to 2.71 times those in the native plant soils.The activities of acid phosphatase,alkaline phosphatase,and urease in the rhizosphere soil of B.pilosa were 1.98-2.25 times higher than in the native plant soils.Using high-throughput sequencing of the16S rRNA gene,we found that B.pilosa altered the composition of the soil microbial community.Specifically,many genera in Actinobacteria and Proteobacteria were enriched in B.pilosa soils.Further correlation analyses verified that these genera had significantly positive relationships with soil nutrients and enzyme activities.Plant biomass,soil p H,and the contents of organic matter,TN,NO_(3)^(-),TP,AP,TK,and AK were the main factors affecting soil microbial communities.This study showed that the invasion of B.pilosa led to significant alterations in the composition of the soil microbial communities.These changes were closely linked to modifications in plant traits as well as soil physical and chemical properties.Some microbial species related to C,N and P cycling were enriched in the soil invaded by B.pilosa.These findings provide additional support for the hypothesis of soil-microbe feedback in the successful invasion of alien plants.They also offer insights into the ecological mechanism by which soil microbes contribute to the successful invasion of B.pilosa.Overall,our research contributes to a better understanding of the complex interactions between invasive plants,soil microbial communities,and ecosystem dynamics.展开更多
Different chemical compositions of soil organic carbon(SOC)affect its persistence and whether it signifi-cantly differs between natural forests and plantations remains unclear.By synthesizing 234 observations of SOC c...Different chemical compositions of soil organic carbon(SOC)affect its persistence and whether it signifi-cantly differs between natural forests and plantations remains unclear.By synthesizing 234 observations of SOC chemical compositions,we evaluated global patterns of concentra-tion,individual chemical composition(alkyl C,O-alkyl C,aromatic C,and carbonyl C),and their distribution even-ness.Our results indicate a notably higher SOC,a markedly larger proportion of recalcitrant alkyl C,and lower easily decomposed carbonyl C proportion in natural forests.How-ever,SOC chemical compositions were appreciably more evenly distributed in plantations.Based on the assumed con-ceptual index of SOC chemical composition evenness,we deduced that,compared to natural forests,plantations may have higher possible resistance to SOC decomposition under disturbances.In tropical regions,SOC levels,recalcitrant SOC chemical composition,and their distributed evenness were significantly higher in natural forests,indicating that SOC has higher chemical stability and possible resistance to decomposition.Climate factors had minor effects on alkyl C in forests globally,while they notably affected SOC chemi-cal composition in tropical forests.This could contribute to the differences in chemical compositions and their distrib-uted evenness between plantations and natural stands.展开更多
Fracture grouting is widely used for building foundation reinforcement,however the underpinning mechanisms are still not clear.Using numerical results about a single-hole fracture grouting process as a basis,a model c...Fracture grouting is widely used for building foundation reinforcement,however the underpinning mechanisms are still not clear.Using numerical results about a single-hole fracture grouting process as a basis,a model composed of soil and grouting veins has been created to analyze the reinforcement mechanism.The influence weights of the grouting vein skeleton and compaction effect have been studied,thereby obtaining relevant information on the compressive modulus of the considered composite soil.The research results show that the compaction effect plays a leading role in the soil fracture grouting reinforcement.The grouting pressure,the hardened grouting vein modulus,and the shape of the grouting veins all influence the compressive modulus of the composite soil.展开更多
In order to understand the effect of different land use on soil physics and nutrients properties of the debris flow bottomland, a case study at Daqing gully (in Xiaojiang Basin, Yunnan) was conducted in 2004. Soil s...In order to understand the effect of different land use on soil physics and nutrients properties of the debris flow bottomland, a case study at Daqing gully (in Xiaojiang Basin, Yunnan) was conducted in 2004. Soil samples were taken at depth of 0-10,10-20,20-40,40-60,60-80 cm under three land use patterns crop bottomland (CL), forest bottomland (FL), and barren bottomland(BL). The results showed that the developing bottomland to CL promoted soil toaccumulate total phosphorus (TP) and available phosphorus (AP), pH value transferred from neutral to alkalescency, and organic matter decreased significantly. Furthermore, the contents of total nitrogen (TN) and available nitrogen (AN) in CL were lower than that of FL and BL because the growth of crops consumed more nutrients in soil. The results also showed that the contents of TP, AP and available potassium (AK) in soil were positively correlated with soil particle.展开更多
To explore the stabilization effect of stabilizing agent GX07 on treating organic soil and the influence of organic matter on the strength development of stabilized soil,artificial organic soil with various organic ma...To explore the stabilization effect of stabilizing agent GX07 on treating organic soil and the influence of organic matter on the strength development of stabilized soil,artificial organic soil with various organic matter content was obtained by adding different amounts of fulvic acid into non-organic clay,and then liquid-plastic limit tests were carried out on the artificial organic soil.Meanwhile,unconfined compressive strength(UCS) tests were performed on cement-only soil and composite stabilized soil,respectively.The test results indicate that the plastic limit of soil samples increases linearly,and the liquid limit increases exponentially as the organic matter content increases.The strength of stabilized soil is well correlated with the organic matter content,cement content,stabilizing agent content and curing time.When the organic matter content is 6%,as the cement content varies in the range of 10%-20%,the strength of cement-only soil increases from 88.5 to 280.8 kPa.Once 12.6% GX07 is added into the mix,the strength of stabilized soil is 4.93 times compared with that of cement-only soil.GX07 can obviously improve the strength of cemented-soil and has a good economic applicability.A strength model is proposed to predict strength development.展开更多
High soil salinity imposes osmotic stress and ion toxicity in plants,leading to substantial crop yield loss worldwide.Understanding of the quantitative and dynamic physiological responses to composite soil salt stress...High soil salinity imposes osmotic stress and ion toxicity in plants,leading to substantial crop yield loss worldwide.Understanding of the quantitative and dynamic physiological responses to composite soil salt stress is limited and needs to be expanded.In this study,physiological,nutritional,and biomass yield parameters of tobacco(Nicotiana tabacum L.)grown in soil with five levels of composite soil salinity(CSS),basal CSS level(control,CK)and 3(T_(1)),6(T_(2)),9(T_(3)),and 12(T_(4))times the basal CSS level,under greenhouse were determined at days 30,60,and 90 after transplanting.Leaf dry biomass significantly(P<0.05)increased at the low salinity levels applied(T_(1) and T_(2))at all three time points,whereas it progressively declined as the CSS level further increased.The leaf physiological and photosynthetic responses were more adversely affected by CSS at the early growth stage(day 30).A path coefficient analysis demonstrated that leaf proline content had the largest direct effect(-0.66),and leaf Cu content had the most significant indirect effect(0.49)on leaf dry biomass of plants.The results suggest that lower CSS levels(T_(1) and T_(2))could stimulate tobacco growth(leaf biomass yield,in particular),and higher leaf proline and Cu levels at the early growth stage may potentially increase the ability of tobacco plants to withstand the adverse effects of salinity,which could be considered for future research and development of salinity management strategies.展开更多
Studies conducted over several decades have shown that the freeze-thaw cycles are a process of energy input and output in soil, which help drive the formation of soil structure, through water expansion by crystallizat...Studies conducted over several decades have shown that the freeze-thaw cycles are a process of energy input and output in soil, which help drive the formation of soil structure, through water expansion by crystallization and the movement of water and salts by thermal gradients. However, most of these studies are published in Russian or Chinese and are less accessible to international researchers. This review brought together a wide range of studies on the effects of freezing and thawing on soil structure. The following findings are summarized: i) soil structure after freeze-thaw cycles changes considerably and the changes are due to the mechanical fragmentation of soil coarse mineral particles and the aggregation of soil fine particles; ii) the particle size of soil becomes homogeneous and the variation in soil structure weakens as the number of freeze-thaw cycles increases; iii) in the freezing process of soil, an important principle in the variation of soil particle bonding is presented as: condensation →aggregation→ crystallization; iv) the freeze-thaw cycling process has a strong effect on soil structure by changing the granulometric composition of mineral particles and structures within the soil. The freeze-thaw cycling process strengthens particle bonding, which causes an overall increase in aggregate stability of soil, showing a process from destruction to reconstruction.展开更多
This study investigated the influence of broadleaf and conifer vegetation on soil microbial communities in a distinct vertical distribution belt in Northeast China.Soil samples were taken at 0-5,5-10 and 10-20 cm dept...This study investigated the influence of broadleaf and conifer vegetation on soil microbial communities in a distinct vertical distribution belt in Northeast China.Soil samples were taken at 0-5,5-10 and 10-20 cm depths from four vegetation types at different altitudes,which were characterized by poplar(Populus davidiana)(1250-1300 m),poplar(P.davidiana) mixed with birch(Betula platyphylla)(1370-1550 m),birch(B.platyphylla)(1550-1720 m),and larch(Larix principis-rupprechtii)(1840-1890 m).Microbial biomass and community structure were determined using the fumigation-extraction method and phospholipid fatty acid(PLFA) analysis,and soil fungal community level physiological profiles(CLPP) were characterized using Biolog FF Microplates.It was found that soil properties,especially soil organic carbon and water content,contributed significantly to the variations in soil microbes.With increasing soil depth,the soil microbial biomass,fungal biomass,and fungal catabolic ability diminished;however,the ratio of fungi to bacteria increased.The fungal ratio was higher under larch forests compared to that under poplar,birch,and their mixed forests,although the soil microbial biomass was lower.The direct contribution of vegetation types to the soil microbial community variation was 12%.If the indirect contribution through soil organic carbon was included,variations in the vegetation type had substantial influences on soil microbial composition and diversity.展开更多
Salinization and sodicity are obstacles for vegetation reconstruction of coastal tidal flat soils. A study was conducted with flue gas desulfurization(FGD)-gypsum applied at rates of 0, 15, 30, 45 and 60 Mg/ha to re...Salinization and sodicity are obstacles for vegetation reconstruction of coastal tidal flat soils. A study was conducted with flue gas desulfurization(FGD)-gypsum applied at rates of 0, 15, 30, 45 and 60 Mg/ha to remediate tidal flat soils of the Yangtze River estuary.Exchangeable sodium percentage(ESP), exchangeable sodium(ExNa), p H, soluble salt concentration, and composition of soluble salts were measured in 10 cm increments from the surface to 30 cm depth after 6 and 18 months. The results indicated that the effect of FGD-gypsum is greatest in the 0–10 cm mixing soil layer and 60 Mg/ha was the optimal rate that can reduce the ESP to below 6% and decrease soil p H to neutral(7.0). The improvement effect was reached after 6 months, and remained after 18 months. The composition of soluble salts was transformed from sodic salt ions mainly containing Na~+, HCO_3^-+ CO_3^(2-)and Cl-to neutral salt ions mainly containing Ca^(2+)and SO_4^(2-). Non-halophyte plants were survived at 90%. The study demonstrates that the use of FGD-gypsum for remediating tidal flat soils is promising.展开更多
Mineral compositions of aerosol particles were investigated at four sites (Aksu, Dunhuang, Zhenbeitai, and Tongliao) in desert regions of northern China from March to May in 2001 and 2002 during the intensive field ...Mineral compositions of aerosol particles were investigated at four sites (Aksu, Dunhuang, Zhenbeitai, and Tongliao) in desert regions of northern China from March to May in 2001 and 2002 during the intensive field campaign period of ACE-Asia (Aerosol Characterization Experiments-Asia). The X-ray diffraction (XRD) results show the main minerals for Asian dust are illite, chlorite, kaolinite, quartz, feldspar, calcite, and dolomite. Gypsum, hornblende, and halite are also detected in several samples. Semi-quantitative mineralogical data of aerosol samples show that carbonate content decreases from western to eastern source areas; that is, soil dust collected at western source area sites of Dunhuang and Aksu are enriched with carbonate, while northeastern source area site of Tongliao is associated with low carbonate content. But the spatial distribution of feldspar exhibits a different pattern as compared to carbonate, increasing from the western to the eastern sources. The total clay content is significantly higher (73% in average) at the deposition site of Changwu than those at source areas. Air-mass back trajectory studies for the three dust storm events observed at Changwu, showed that soil dust transport pathways were as expected from carbonate content for the source identification, further demonstrating that carbonate was a useful tracer for eolian dust on regional scale in northern China.展开更多
The chemical characteristics,element contents,mineral compositions,and the ameliorative effects on acid soils of five biomass ashes from different materials were analyzed. The chemical properties of the ashes varied d...The chemical characteristics,element contents,mineral compositions,and the ameliorative effects on acid soils of five biomass ashes from different materials were analyzed. The chemical properties of the ashes varied depending on the source biomass material. An increase in the concrete shuttering contents in the biomass materials led to higher alkalinity,and higher Ca and Mg levels in biomass ashes,which made them particularly good at ameliorating effects on soil acidity. However,heavy metal contents,such as Cr,Cu,and Zn in the ashes,were relatively high. The incorporation of all ashes increased soil p H,exchangeable base cations,and available phosphorus,but decreased soil exchangeable acidity. The application of the ashes from biomass materials with a high concrete shuttering content increased the soil available heavy metal contents. Therefore,the biomass ashes from wood and crop residues with low concrete contents were the better acid soil amendments.展开更多
Soil organic carbon(SOC) has primary importance in terms of soil physics, soil fertility and even of climate change control. One hundred soil samples were taken from an intensively cultivated Cambisol to quantify SOC ...Soil organic carbon(SOC) has primary importance in terms of soil physics, soil fertility and even of climate change control. One hundred soil samples were taken from an intensively cultivated Cambisol to quantify SOC redistribution triggered by soil erosion under a subhumid climate, by the simultaneous application of diffuse reflectance(240–1 900 nm) and traditional physico-chemical methods.The representative sample points were collected from the solum along the slopes at the depth of 20–300 cm with a mean SOC content of 12 g kg^(-1). Hierarchical cluster analyses were performed based on the determined SOC results. The spatial pattern of the groups created were similar, and even though the classifications were not the same, diffuse reflectance had proven to be a suitable method for soil/sediment classification even within a given arable field. Both organic and inorganic carbon distributions were found to be a proper tool for estimations of past soil erosion processes. The SOC enrichment was found on two sedimentary spots with different geomorphological positions. Soil organic matter composition also differed between the two spots due to selective deposition of the delivered organic matter. The components with low-molecular-weight reached the bottom of the slope where they could leach into the profile, while the more polymerised organic matter compositions were delivered and deposited even before on a higher segment of the slope in an aggregated form. This spatial difference appeared below the uppermost tilled soil layer as well, referring the lower efficiency of conventional ploughing tillage in soil spatial homogenisation.展开更多
The transport of sediments is a crucial part of soil erosion.Accurately calculating the sediment transport capacity is key to the construction of soil erosion process models.Research on Tc has focused mainly on the dy...The transport of sediments is a crucial part of soil erosion.Accurately calculating the sediment transport capacity is key to the construction of soil erosion process models.Research on Tc has focused mainly on the dynamics of a single particle of sediment and hydraulic variables.There have been few studies of the impact of soil aggregates on the Tc.To clarify how sediment characteristics,including those for single particles and aggregates,affect the Tc of overland flow with no raindrop import,flume experiments were implemented at slope gradients varying from 5.24%to 26.80%and flow discharges ranging from 0.68 to 5.41×10^(-3)m^(2)s^(-1).The experimental materials were five typical soils in China.The results indicated that the correlation between the measured Tc and sediment mechanical composition indexes of the five soils was indistinctive in this study.The sediment settling velocity with aggregates has a significant corre-lation with the measured Tc.New equations,including for the sediment settling velocity with aggregatesωud75,were established to calculate the Tc.The empirical equation that includedωud75,slope gradient and unit discharge performed greatly in predicting Tc(R^(2)=0.93,NSE=0.90).ωud75 can effectively improve the calculation accuracy of Tc.The new equation including flow and sediment properties obtained through dimensional analysis performed well in predicting Tc(R^(2)=0.99,NSE=0.91),and the calculation accuracy was better than that of the empirical model derived in this study.These findings indicate that the sediment settling velocity is an important variable in the equation for predicting sediment transport capacity of overland flow.展开更多
基金National Natural Science Foundation of China under Grant Nos. 52178336 and 52108324Natural Science Research Project of Colleges and Universities in Jiangsu Province of China under Grant No. 18KJA560002+1 种基金the Middle-Aged&Young Science Leaders of Qinglan Project of Universities in Jiangsu Province of ChinaPostgraduate Research&Practice Innovation Program in Jiangsu Province of China under Grant No. KYCX24_1585
文摘The seismic performance of a caisson structure under two types of models with a saturated sandy foundation(CSS)and an expanded polystyrene(EPS)composite soil foundation(CES)are studied using shaking table tests.The macro phenomena of the two different foundation models are described and analyzed.The effects of the replacement of EPS composite soil on seismic-induced liquefaction of backfill and the dynamic performance of a caisson structure are evaluated in detail.The results show that the excess pore water pressure generation in the CES is significantly slower than that in the CSS during the shaking.The dynamic earth pressure acting on the caisson has a triangular shape.The response of horizontal acceleration,displacement,settlement,and rotation angle of the caisson in the CES is smaller than that in the CSS,which means the caisson in the CES has a better seismic performance.Furthermore,the out-of-phase phenomenon between dynamic earth thrust and inertial force in the CES is more obvious than that in the CSS,which is beneficial to reduce the lateral force and improve the stability of the caisson structure.
基金Foundation item: Project(2009-K3-2) supported by the Ministry of Housing and Urban-Rural Development of China
文摘A complete case of a deep excavation was explored. According to the practical working conditions, a 3D non-linear finite element procedure is used to simulate a deep excavation supported by the composite soil nailed wall with bored piles in soft soil. The modified cam clay model is employed as the constitutive relationship of the soil in the numerical simulation. Results from the numerical analysis are fitted well with the field data, which indicate that the research approach used is reliable. Based on the field data and numerical results of the deep excavation supported by four different patterns of the composite soil nailed wall, the significant corner effect is founded in the 3D deep excavation. If bored piles or soil anchors are considered in the composite soil nailed wall, they are beneficial to decreasing deformations and internal forces of bored piles, cement mixing piles, soil anchors, soil nailings and soil around the deep excavation. Besides, the effects due to bored piles are more significant than those deduced from soil anchors. All mentioned above prove that the composite soil nailed wall with bored piles is feasible in the deep excavation.
基金The National Natural Science Foundation of China(No.51108081)
文摘In order to investigate the effect o f some factors on the unconfined compressive strength(UCS)for composite soil stabilizer-stabilized gravel soil(CSSSGS),the orthogonal test is adopted to set up the experimental scheme.Three levels o f each factor armconsidered to obtain the change laws o f UCS,in which the binder dosages are8%,10%,and12%;the curing times ae7,14and21d;the gradation nae0.3,0.35and0.4;and the degrees of compaction are95%,97%,and99%.The range analysis clearly indicates that the influence degree o f the four factors on UCS is in such an order:dosage,age,gradation,and degree o f compaction.The variance analysis shows that only the composite soil stabilizer dosage can significantly affect UCS.In road construction,the examination o f composite soil stabilizer dosage and base-course maintenance should be given much more attention to obtain satisfactory base-course strength,compared w ith gradation floating and the change of degree o f compaction.
基金supported by the Natural Science Foundation of Jiangsu Province,China (Grant No. BK2008040)National Natural Science Foundation of China (Grant No. 51109107)China Postdoctoral Science Foundation (Grant No. 2012M5112)
文摘EPS composite soil is one type of premixed lightweight fills studied by numerous researchers, However, one aspect that has not been fully understood is the creep behaviors which may have significant effect on the design and application of EPS com- posite soil. In this paper, the results of a series of oedometer creep tests and triaxial undrained creep tests on EPS composite soil were presented. Four main influencing factors were identified and their effects on the creep behaviors of EPS composite soil were studied. Three well established creep models, namely, Findley model, Singh & Mitchell model, and Mesri model, were used to simulate the creep behavior of EPS composite soil. This study shows that the Findley creep model fits the test re- suits the best. A semi-empirical creep model was also proposed to model the creep behavior under axisymmetric conditions. In this model, the creep strain was divided into instant and viscous elastic strain as well as instant and viscous plastic strain which were simulated by element models and empirical equations, respectively. It was shown that the proposed creep model was able to precisely predict the creep strain of EPS composite soil.
基金Acknowledgements The authors thank Beijing Natural Science Founda- tion (J150004), the National Natural Science Foundation of China (Grant No. 51408335) and Key Project of Natural Science Foundation of China (41130637) for the financial support of this work.
文摘Sulfamethoxzole (SMX) and trimethoprim (TMP), two combined-using sulfonamide antibiotics, have gained increasing attention in the surface water, groundwater and the drinking water because of the ecological risk. The removal of TMP and SMX by artificial composite soil treatment system (ACST) with different infiltration rates was systematically investigated using K+, Na+, Ca2+, Mg2+ hydrogeochemical indexes. Batch experiments showed that the sorption onto the low-cost and commercially available clay ceramsites was effective for the removal of SMX and TMP from water. The column with more silty clay at high infiltration rate (1.394 m·d^-1) had removal rates of 80% to 90% for TMP and 60% to 70% for SMX. High SMX and TMP removal rates had a higher effluent concentration of K+, Ca2+ and Mg2+ and had a lower effluent Na+ concentration. Removal was strongly related to sorption. The results showed that the removal of SMX and TMP was related to hydrogeochemical processes. In this study, ACST is determined to be applicable to the drinking water plants.
基金funded by the National Key R&D Program of China(2022YFC2601100,2021YFD1400100 and 2021YFC2600400)the National Natural Science Foundation of China(42207162)。
文摘Bidens pilosa is recognized as one of the major invasive plants in China.Its invasion has been associated with significant losses in agriculture,forestry,husbandry,and biodiversity.Soil ecosystems play an important role in alien plant invasion.Microorganisms within the soil act as intermediaries between plants and soil ecological functions,playing a role in regulating soil enzyme activities and nutrient dynamics.Understanding the interactions between invasive plants,soil microorganisms,and soil ecological processes is vital for managing and mitigating the impacts of invasive species on the environment.In this study,we conducted a systematic analysis focusing on B.pilosa and Setaria viridis,a common native companion plant in the invaded area.To simulate the invasion process of B.pilosa,we constructed homogeneous plots consisting of B.pilosa and S.viridis grown separately as monocultures,as well as in mixtures.The rhizosphere and bulk soils were collected from the alien plant B.pilosa and the native plant S.viridis.In order to focus on the soil ecological functional mechanisms that contribute to the successful invasion of B.pilosa,we analyzed the effects of B.pilosa on the composition of soil microbial communities and soil ecological functions.The results showed that the biomass of B.pilosa increased by 27.51% and that of S.viridis was significantly reduced by 66.56%.The organic matter contents in the bulk and rhizosphere soils of B.pilosa were approximately 1.30 times those in the native plant soils.The TN and NO_(3)^(-)contents in the rhizosphere soil of B.pilosa were 1.30 to 2.71 times those in the native plant soils.The activities of acid phosphatase,alkaline phosphatase,and urease in the rhizosphere soil of B.pilosa were 1.98-2.25 times higher than in the native plant soils.Using high-throughput sequencing of the16S rRNA gene,we found that B.pilosa altered the composition of the soil microbial community.Specifically,many genera in Actinobacteria and Proteobacteria were enriched in B.pilosa soils.Further correlation analyses verified that these genera had significantly positive relationships with soil nutrients and enzyme activities.Plant biomass,soil p H,and the contents of organic matter,TN,NO_(3)^(-),TP,AP,TK,and AK were the main factors affecting soil microbial communities.This study showed that the invasion of B.pilosa led to significant alterations in the composition of the soil microbial communities.These changes were closely linked to modifications in plant traits as well as soil physical and chemical properties.Some microbial species related to C,N and P cycling were enriched in the soil invaded by B.pilosa.These findings provide additional support for the hypothesis of soil-microbe feedback in the successful invasion of alien plants.They also offer insights into the ecological mechanism by which soil microbes contribute to the successful invasion of B.pilosa.Overall,our research contributes to a better understanding of the complex interactions between invasive plants,soil microbial communities,and ecosystem dynamics.
基金supported by the National Natural Science Foundation of China(Grants 31971463,31930078)the National Key R&D Program of China(Grant 2021YFD2200402)the Chinese Academy of Forestry(Grant CAFYBB2020ZA001).
文摘Different chemical compositions of soil organic carbon(SOC)affect its persistence and whether it signifi-cantly differs between natural forests and plantations remains unclear.By synthesizing 234 observations of SOC chemical compositions,we evaluated global patterns of concentra-tion,individual chemical composition(alkyl C,O-alkyl C,aromatic C,and carbonyl C),and their distribution even-ness.Our results indicate a notably higher SOC,a markedly larger proportion of recalcitrant alkyl C,and lower easily decomposed carbonyl C proportion in natural forests.How-ever,SOC chemical compositions were appreciably more evenly distributed in plantations.Based on the assumed con-ceptual index of SOC chemical composition evenness,we deduced that,compared to natural forests,plantations may have higher possible resistance to SOC decomposition under disturbances.In tropical regions,SOC levels,recalcitrant SOC chemical composition,and their distributed evenness were significantly higher in natural forests,indicating that SOC has higher chemical stability and possible resistance to decomposition.Climate factors had minor effects on alkyl C in forests globally,while they notably affected SOC chemi-cal composition in tropical forests.This could contribute to the differences in chemical compositions and their distrib-uted evenness between plantations and natural stands.
基金supported by the National Key R&D Plan of China(No.2017YFC0805400).
文摘Fracture grouting is widely used for building foundation reinforcement,however the underpinning mechanisms are still not clear.Using numerical results about a single-hole fracture grouting process as a basis,a model composed of soil and grouting veins has been created to analyze the reinforcement mechanism.The influence weights of the grouting vein skeleton and compaction effect have been studied,thereby obtaining relevant information on the compressive modulus of the considered composite soil.The research results show that the compaction effect plays a leading role in the soil fracture grouting reinforcement.The grouting pressure,the hardened grouting vein modulus,and the shape of the grouting veins all influence the compressive modulus of the composite soil.
文摘In order to understand the effect of different land use on soil physics and nutrients properties of the debris flow bottomland, a case study at Daqing gully (in Xiaojiang Basin, Yunnan) was conducted in 2004. Soil samples were taken at depth of 0-10,10-20,20-40,40-60,60-80 cm under three land use patterns crop bottomland (CL), forest bottomland (FL), and barren bottomland(BL). The results showed that the developing bottomland to CL promoted soil toaccumulate total phosphorus (TP) and available phosphorus (AP), pH value transferred from neutral to alkalescency, and organic matter decreased significantly. Furthermore, the contents of total nitrogen (TN) and available nitrogen (AN) in CL were lower than that of FL and BL because the growth of crops consumed more nutrients in soil. The results also showed that the contents of TP, AP and available potassium (AK) in soil were positively correlated with soil particle.
基金Project(50678158) supported by the National Natural Science Foundation of China
文摘To explore the stabilization effect of stabilizing agent GX07 on treating organic soil and the influence of organic matter on the strength development of stabilized soil,artificial organic soil with various organic matter content was obtained by adding different amounts of fulvic acid into non-organic clay,and then liquid-plastic limit tests were carried out on the artificial organic soil.Meanwhile,unconfined compressive strength(UCS) tests were performed on cement-only soil and composite stabilized soil,respectively.The test results indicate that the plastic limit of soil samples increases linearly,and the liquid limit increases exponentially as the organic matter content increases.The strength of stabilized soil is well correlated with the organic matter content,cement content,stabilizing agent content and curing time.When the organic matter content is 6%,as the cement content varies in the range of 10%-20%,the strength of cement-only soil increases from 88.5 to 280.8 kPa.Once 12.6% GX07 is added into the mix,the strength of stabilized soil is 4.93 times compared with that of cement-only soil.GX07 can obviously improve the strength of cemented-soil and has a good economic applicability.A strength model is proposed to predict strength development.
基金funded by the Key Laboratory for Tobacco Cultivation of Tobacco Industry of China(No.30800665)the Marine Science and Technology Innovation Fund of Jiangsu Provincial Department of Natural Resources,China(No.JSZRHYKJ202003)+1 种基金the Scientific and Technological Innovation Fund of Jiangsu Provincial Department of Science and Technology,China(No.BE2022304)Luoyang Tobacco Company of China(No.LYKJ201501)。
文摘High soil salinity imposes osmotic stress and ion toxicity in plants,leading to substantial crop yield loss worldwide.Understanding of the quantitative and dynamic physiological responses to composite soil salt stress is limited and needs to be expanded.In this study,physiological,nutritional,and biomass yield parameters of tobacco(Nicotiana tabacum L.)grown in soil with five levels of composite soil salinity(CSS),basal CSS level(control,CK)and 3(T_(1)),6(T_(2)),9(T_(3)),and 12(T_(4))times the basal CSS level,under greenhouse were determined at days 30,60,and 90 after transplanting.Leaf dry biomass significantly(P<0.05)increased at the low salinity levels applied(T_(1) and T_(2))at all three time points,whereas it progressively declined as the CSS level further increased.The leaf physiological and photosynthetic responses were more adversely affected by CSS at the early growth stage(day 30).A path coefficient analysis demonstrated that leaf proline content had the largest direct effect(-0.66),and leaf Cu content had the most significant indirect effect(0.49)on leaf dry biomass of plants.The results suggest that lower CSS levels(T_(1) and T_(2))could stimulate tobacco growth(leaf biomass yield,in particular),and higher leaf proline and Cu levels at the early growth stage may potentially increase the ability of tobacco plants to withstand the adverse effects of salinity,which could be considered for future research and development of salinity management strategies.
基金supported by the Natural Science Foundation of China(No.41301070)the National Key Basic Research Program(973 Program) of China (No.2012CB026106)+2 种基金the West Light Program for Talent Cultivation of Chinese Academy of Sciences(toDr.ZHANG Ze)the Scientific Research Foundation for the Returned Overseas Chinese Scholars,China Ministry of Education(to Dr.ZHANG Ze)the Scientific and Technical Projects of the Transport Department of Gansu Province,China(No.2014-03)
文摘Studies conducted over several decades have shown that the freeze-thaw cycles are a process of energy input and output in soil, which help drive the formation of soil structure, through water expansion by crystallization and the movement of water and salts by thermal gradients. However, most of these studies are published in Russian or Chinese and are less accessible to international researchers. This review brought together a wide range of studies on the effects of freezing and thawing on soil structure. The following findings are summarized: i) soil structure after freeze-thaw cycles changes considerably and the changes are due to the mechanical fragmentation of soil coarse mineral particles and the aggregation of soil fine particles; ii) the particle size of soil becomes homogeneous and the variation in soil structure weakens as the number of freeze-thaw cycles increases; iii) in the freezing process of soil, an important principle in the variation of soil particle bonding is presented as: condensation →aggregation→ crystallization; iv) the freeze-thaw cycling process has a strong effect on soil structure by changing the granulometric composition of mineral particles and structures within the soil. The freeze-thaw cycling process strengthens particle bonding, which causes an overall increase in aggregate stability of soil, showing a process from destruction to reconstruction.
基金supported by the National Natural Science Foundation of China (30700639,31170581)
文摘This study investigated the influence of broadleaf and conifer vegetation on soil microbial communities in a distinct vertical distribution belt in Northeast China.Soil samples were taken at 0-5,5-10 and 10-20 cm depths from four vegetation types at different altitudes,which were characterized by poplar(Populus davidiana)(1250-1300 m),poplar(P.davidiana) mixed with birch(Betula platyphylla)(1370-1550 m),birch(B.platyphylla)(1550-1720 m),and larch(Larix principis-rupprechtii)(1840-1890 m).Microbial biomass and community structure were determined using the fumigation-extraction method and phospholipid fatty acid(PLFA) analysis,and soil fungal community level physiological profiles(CLPP) were characterized using Biolog FF Microplates.It was found that soil properties,especially soil organic carbon and water content,contributed significantly to the variations in soil microbes.With increasing soil depth,the soil microbial biomass,fungal biomass,and fungal catabolic ability diminished;however,the ratio of fungi to bacteria increased.The fungal ratio was higher under larch forests compared to that under poplar,birch,and their mixed forests,although the soil microbial biomass was lower.The direct contribution of vegetation types to the soil microbial community variation was 12%.If the indirect contribution through soil organic carbon was included,variations in the vegetation type had substantial influences on soil microbial composition and diversity.
基金supported by the National Public Project of Environmental Protection(No.201109023)the Shanghai Agricultural Committee(No.2012-2-1)
文摘Salinization and sodicity are obstacles for vegetation reconstruction of coastal tidal flat soils. A study was conducted with flue gas desulfurization(FGD)-gypsum applied at rates of 0, 15, 30, 45 and 60 Mg/ha to remediate tidal flat soils of the Yangtze River estuary.Exchangeable sodium percentage(ESP), exchangeable sodium(ExNa), p H, soluble salt concentration, and composition of soluble salts were measured in 10 cm increments from the surface to 30 cm depth after 6 and 18 months. The results indicated that the effect of FGD-gypsum is greatest in the 0–10 cm mixing soil layer and 60 Mg/ha was the optimal rate that can reduce the ESP to below 6% and decrease soil p H to neutral(7.0). The improvement effect was reached after 6 months, and remained after 18 months. The composition of soluble salts was transformed from sodic salt ions mainly containing Na~+, HCO_3^-+ CO_3^(2-)and Cl-to neutral salt ions mainly containing Ca^(2+)and SO_4^(2-). Non-halophyte plants were survived at 90%. The study demonstrates that the use of FGD-gypsum for remediating tidal flat soils is promising.
基金supported by the National Natural Science Foundation of China (Grants 40405023,40675081,and 40599422)a grant from SKLLQG,CASthe staff of Shaanxi Institute of Desert Research,and Aksu Water Balance Observatory of the Chinese Academy of Sciences for their support during sampling
文摘Mineral compositions of aerosol particles were investigated at four sites (Aksu, Dunhuang, Zhenbeitai, and Tongliao) in desert regions of northern China from March to May in 2001 and 2002 during the intensive field campaign period of ACE-Asia (Aerosol Characterization Experiments-Asia). The X-ray diffraction (XRD) results show the main minerals for Asian dust are illite, chlorite, kaolinite, quartz, feldspar, calcite, and dolomite. Gypsum, hornblende, and halite are also detected in several samples. Semi-quantitative mineralogical data of aerosol samples show that carbonate content decreases from western to eastern source areas; that is, soil dust collected at western source area sites of Dunhuang and Aksu are enriched with carbonate, while northeastern source area site of Tongliao is associated with low carbonate content. But the spatial distribution of feldspar exhibits a different pattern as compared to carbonate, increasing from the western to the eastern sources. The total clay content is significantly higher (73% in average) at the deposition site of Changwu than those at source areas. Air-mass back trajectory studies for the three dust storm events observed at Changwu, showed that soil dust transport pathways were as expected from carbonate content for the source identification, further demonstrating that carbonate was a useful tracer for eolian dust on regional scale in northern China.
基金supported by the National Key Basic Research Program of China(No.2014CB441003)the National Key Research and Development of China(No.2016YFD0200302)
文摘The chemical characteristics,element contents,mineral compositions,and the ameliorative effects on acid soils of five biomass ashes from different materials were analyzed. The chemical properties of the ashes varied depending on the source biomass material. An increase in the concrete shuttering contents in the biomass materials led to higher alkalinity,and higher Ca and Mg levels in biomass ashes,which made them particularly good at ameliorating effects on soil acidity. However,heavy metal contents,such as Cr,Cu,and Zn in the ashes,were relatively high. The incorporation of all ashes increased soil p H,exchangeable base cations,and available phosphorus,but decreased soil exchangeable acidity. The application of the ashes from biomass materials with a high concrete shuttering content increased the soil available heavy metal contents. Therefore,the biomass ashes from wood and crop residues with low concrete contents were the better acid soil amendments.
基金funded by the Hungarian Foundation(OTKA)(No.PD-100929)supported by the KutatóKari Kiválósági Támogatás-Research Centre of Excellence-11476-3/2016/FEKUTsupported by the János Bolyai Research Fellowship by the Hungarian Academy of Sciences
文摘Soil organic carbon(SOC) has primary importance in terms of soil physics, soil fertility and even of climate change control. One hundred soil samples were taken from an intensively cultivated Cambisol to quantify SOC redistribution triggered by soil erosion under a subhumid climate, by the simultaneous application of diffuse reflectance(240–1 900 nm) and traditional physico-chemical methods.The representative sample points were collected from the solum along the slopes at the depth of 20–300 cm with a mean SOC content of 12 g kg^(-1). Hierarchical cluster analyses were performed based on the determined SOC results. The spatial pattern of the groups created were similar, and even though the classifications were not the same, diffuse reflectance had proven to be a suitable method for soil/sediment classification even within a given arable field. Both organic and inorganic carbon distributions were found to be a proper tool for estimations of past soil erosion processes. The SOC enrichment was found on two sedimentary spots with different geomorphological positions. Soil organic matter composition also differed between the two spots due to selective deposition of the delivered organic matter. The components with low-molecular-weight reached the bottom of the slope where they could leach into the profile, while the more polymerised organic matter compositions were delivered and deposited even before on a higher segment of the slope in an aggregated form. This spatial difference appeared below the uppermost tilled soil layer as well, referring the lower efficiency of conventional ploughing tillage in soil spatial homogenisation.
基金funded by the National Natural Science Foundation of China(42177308,42130701).
文摘The transport of sediments is a crucial part of soil erosion.Accurately calculating the sediment transport capacity is key to the construction of soil erosion process models.Research on Tc has focused mainly on the dynamics of a single particle of sediment and hydraulic variables.There have been few studies of the impact of soil aggregates on the Tc.To clarify how sediment characteristics,including those for single particles and aggregates,affect the Tc of overland flow with no raindrop import,flume experiments were implemented at slope gradients varying from 5.24%to 26.80%and flow discharges ranging from 0.68 to 5.41×10^(-3)m^(2)s^(-1).The experimental materials were five typical soils in China.The results indicated that the correlation between the measured Tc and sediment mechanical composition indexes of the five soils was indistinctive in this study.The sediment settling velocity with aggregates has a significant corre-lation with the measured Tc.New equations,including for the sediment settling velocity with aggregatesωud75,were established to calculate the Tc.The empirical equation that includedωud75,slope gradient and unit discharge performed greatly in predicting Tc(R^(2)=0.93,NSE=0.90).ωud75 can effectively improve the calculation accuracy of Tc.The new equation including flow and sediment properties obtained through dimensional analysis performed well in predicting Tc(R^(2)=0.99,NSE=0.91),and the calculation accuracy was better than that of the empirical model derived in this study.These findings indicate that the sediment settling velocity is an important variable in the equation for predicting sediment transport capacity of overland flow.