Composites were prepared with polysulfone through ex-situ toughening technique. The dynamic parameters of cyanate/epoxy resin were studied by differential scanning calorimetric(DSC) analysis and dynamic mechanical a...Composites were prepared with polysulfone through ex-situ toughening technique. The dynamic parameters of cyanate/epoxy resin were studied by differential scanning calorimetric(DSC) analysis and dynamic mechanical analysis(DMA). Microstructual toughening mechanism was studied through scanning electron microscopy(SEM). The particle microstructure in interlaminar region of composites toughened through ex-situ toughening technique revealed that a reaction induced phase decomposition and phase inversion happened in the interlaminar region. The thermosetting particles were surrounded by the PS phase, which could signifi cantly improve the delamination resistance of composites. The compression after impact(CAI) can be signifi cantly improved from 180 MPa to 260 MPa by using ex-situ toughening while the mechanical properties are not affected.展开更多
The mechanical properties of ceramic cutting tool materials can be modified by introducing proper content of nanoparticles or whiskers.However,the process of adding whiskers or nanoparticles has the disadvantages of h...The mechanical properties of ceramic cutting tool materials can be modified by introducing proper content of nanoparticles or whiskers.However,the process of adding whiskers or nanoparticles has the disadvantages of high cost and health hazard as well as the agglomeration;although a new in-situ two-step sintering process can solve the above problems to some extent,yet the problems of low conversion ratio of the raw materials and the abnormal grain growth exist in this process.In this paper,an in-situ one-step synthesis technology is proposed,which means the growth of whiskers or nanoparticles and the sintering of the compact can be accomplished by one time in furnace.A kind of Ti(C,N)-based ceramic cutting tool material synergistically toughened by TiB_2 particles and whiskers is fabricated with this new process.The phase compositions,relationships between microstructure and mechanical properties as well as the toughening mechanisms are analyzed by means of X-ray diffraction(XRD)and scanning electron microscopy(SEM).The composite which is sintered under a pressure of 32 MPa at a temperature of 1700℃in vacuum holding for 60 min can get the optimal mechanical properties.Its flexural strength,fracture toughness and Vickers hardness are 540 MPa,7.81 MPa·m(1/2)and 20.42 GPa,respectively.The composite has relatively high density,and the in-situ synthesized TiB_2 whiskers have good surface integrity,which is beneficial for the improvement of the fracture toughness.It is concluded that the main toughening mechanisms of the present composite are whiskers pulling-out and crack deflection induced by whiskers,crack bridging by whiskers/particles and multi-scale particles synergistically toughening.This study proposes an in-situ one-step synthesis technology which can be well used for fabricating particles and whiskers synergistically toughened ceramic tool materials.展开更多
The etching technique of the single-lined zero-thickness specimen grating is applied to the surface of the SiC fiber toughening Si3N4 ceramic composite specimen. The position of the crack and the crack length during t...The etching technique of the single-lined zero-thickness specimen grating is applied to the surface of the SiC fiber toughening Si3N4 ceramic composite specimen. The position of the crack and the crack length during the process of crack extension when the load is applied and gradually increased can be determined by recording the output voltage value of the Wheatstone bridge in which the ceramic specimen with the fracture grating on is located. The crack-growth-resistance(R-curve) of this material is thus obtained.展开更多
基金Funded by the National Natural Science Foundation of China(51373137)
文摘Composites were prepared with polysulfone through ex-situ toughening technique. The dynamic parameters of cyanate/epoxy resin were studied by differential scanning calorimetric(DSC) analysis and dynamic mechanical analysis(DMA). Microstructual toughening mechanism was studied through scanning electron microscopy(SEM). The particle microstructure in interlaminar region of composites toughened through ex-situ toughening technique revealed that a reaction induced phase decomposition and phase inversion happened in the interlaminar region. The thermosetting particles were surrounded by the PS phase, which could signifi cantly improve the delamination resistance of composites. The compression after impact(CAI) can be signifi cantly improved from 180 MPa to 260 MPa by using ex-situ toughening while the mechanical properties are not affected.
基金Supported by National Natural Science Foundation of China(Grant No.51175305)Key Special Project of Numerical Control Machine Tool of China(Grant No.2012ZX04003-051)China Postdoctoral Science Special Foundation(Grant No.2012T50610)
文摘The mechanical properties of ceramic cutting tool materials can be modified by introducing proper content of nanoparticles or whiskers.However,the process of adding whiskers or nanoparticles has the disadvantages of high cost and health hazard as well as the agglomeration;although a new in-situ two-step sintering process can solve the above problems to some extent,yet the problems of low conversion ratio of the raw materials and the abnormal grain growth exist in this process.In this paper,an in-situ one-step synthesis technology is proposed,which means the growth of whiskers or nanoparticles and the sintering of the compact can be accomplished by one time in furnace.A kind of Ti(C,N)-based ceramic cutting tool material synergistically toughened by TiB_2 particles and whiskers is fabricated with this new process.The phase compositions,relationships between microstructure and mechanical properties as well as the toughening mechanisms are analyzed by means of X-ray diffraction(XRD)and scanning electron microscopy(SEM).The composite which is sintered under a pressure of 32 MPa at a temperature of 1700℃in vacuum holding for 60 min can get the optimal mechanical properties.Its flexural strength,fracture toughness and Vickers hardness are 540 MPa,7.81 MPa·m(1/2)and 20.42 GPa,respectively.The composite has relatively high density,and the in-situ synthesized TiB_2 whiskers have good surface integrity,which is beneficial for the improvement of the fracture toughness.It is concluded that the main toughening mechanisms of the present composite are whiskers pulling-out and crack deflection induced by whiskers,crack bridging by whiskers/particles and multi-scale particles synergistically toughening.This study proposes an in-situ one-step synthesis technology which can be well used for fabricating particles and whiskers synergistically toughened ceramic tool materials.
文摘The etching technique of the single-lined zero-thickness specimen grating is applied to the surface of the SiC fiber toughening Si3N4 ceramic composite specimen. The position of the crack and the crack length during the process of crack extension when the load is applied and gradually increased can be determined by recording the output voltage value of the Wheatstone bridge in which the ceramic specimen with the fracture grating on is located. The crack-growth-resistance(R-curve) of this material is thus obtained.