A numerical model of foundry filling process was established based on the smoothed particle hydrodynamics(SPH)method.To mimic the constraints that the solid mold prescribes on the filling fluid,a composite treatment...A numerical model of foundry filling process was established based on the smoothed particle hydrodynamics(SPH)method.To mimic the constraints that the solid mold prescribes on the filling fluid,a composite treatment to the solid boundaries is elaborately designed.On solid boundary surfaces,boundary particles were set,which exert Lennard-Jones force on approaching fluid particles;inside the solid mold,ghost particles were arranged to complete the compact domain of near-boundary fluid particles.Water analog experiments were conducted in parallel with the model simulations.Very good agreement between experimental and simulation results demonstrates the success of model development.展开更多
Ru O2·n H2O film was deposited on tantalum foils by electrodeposition and heat treatment using Ru Cl3·3H2O as precursor.Surface morphology, composition change and cyclic voltammetry from precursor to amorpho...Ru O2·n H2O film was deposited on tantalum foils by electrodeposition and heat treatment using Ru Cl3·3H2O as precursor.Surface morphology, composition change and cyclic voltammetry from precursor to amorphous and crystalline RuO2·n H2O films were studied by X-ray diffractometer, Fourier transformation infrared spectrometer, differential thermal analyzer, scanning electron microscope and electrochemical analyzer, respectively. The results show that the precursor was transformed gradually from amorphous to crystalline phase with temperature. When heat treated at 300 °C for 2h, RuO2·n H2O electrode surface gains mass of2.5 mg/cm2 with specific capacitance of 782 F/g. Besides, it is found that the specific capacitance of the film decreased by roughly20% with voltage scan rate increasing from 5 to 250 m V/s.展开更多
Polycrystalline Cr2AlC coatings were prepared on M38G superalloy using a two-step method consisting of magnetron sputtering from Cr-Al-C composite targets at room temperature and subsequent annealing at 620 ℃. Partic...Polycrystalline Cr2AlC coatings were prepared on M38G superalloy using a two-step method consisting of magnetron sputtering from Cr-Al-C composite targets at room temperature and subsequent annealing at 620 ℃. Particularly, various targets synthesized by hot pressing mixture of Cr, Al, and C powders at 650-1000 ℃ were used. It was found that regardless of the phase compositions and density of the com- posite targets, when the molar ratio of Cr:Al:C in the starting materials was 2:1:1, phase-pure crystalline Cr2AlC coatings were prepared by magnetron sputtering and post crystallization. The Cr2AIC coatings were dense and crack-free and had a duplex structure. The adhesion strength of the coating deposited on M38G superalloy from the 800 ℃ hot-pressed target and then annealed at 620 ℃ for 20 h in Ar exceeded 82 ± 6 MPa, while its hardness was 12 ± 3 GPa.展开更多
Calcium sulfate whiskers(CSWs) modified with glutaraldehyde-crosslinked poly(vinyl alcohol)(PVA) or traditional surface modifiers,including silane coupling agent,titanate coupling agent and stearic acid,were use...Calcium sulfate whiskers(CSWs) modified with glutaraldehyde-crosslinked poly(vinyl alcohol)(PVA) or traditional surface modifiers,including silane coupling agent,titanate coupling agent and stearic acid,were used to strengthen poly(vinyl chloride)(PVC),and the morphologies,mechanical and heat resistant properties of the resulting composites were compared.The results clearly show that glutaraldehyde cross-linked PVA modified CSW/PVC composite(c PVA@CSW/PVC) has the strongest interfacial interaction,good and stable mechanical and heat resistant properties.Nielsen's modified Kerner's equation for Young's modulus is better than other models examined for the CSW/PVC composites.The half debonding angle θ of c PVA@CSW/PVC composite is lower than that of other composites except silane coupling agent modified CSW/PVC composites,indicating a very strong interfacial adhesion between c PVA@CSW and PVC.In general,cross-linked PVA is effective and environmentally friendly in modifying inorganic fillers.展开更多
A silane containing isocynate groups(3-(trimethoxysilyl) propyl cyanic acid ester,NCO) associated with hexamethyldisilazane(HDMS) is used to modify the surface of poly-(p-phenylene terephthalamide)(PPTA) pul...A silane containing isocynate groups(3-(trimethoxysilyl) propyl cyanic acid ester,NCO) associated with hexamethyldisilazane(HDMS) is used to modify the surface of poly-(p-phenylene terephthalamide)(PPTA) pulps. As concerns surface chemistry,Attenuated Total Reflection Flourier Transformed Infrared Spectroscopy(ATR FT-IR) and X-ray photoelectron spectroscopy(XPS) confirm that NCO associated with HDMS silylated PPTA pulp surface successfully. While the modified PPTA pulps are used as reinforcing fillers for silicone composites,the dispersibility and storage stability of the composites are improved as Mooney testing indicated. The silicone composites filled with modified PPTA pulps present a higher tensile strength and much higher broken elongation(3.30 MPa and 166.54%) than that with unmodified pulps(3.08 MPa and 68.47%),respectively.展开更多
基金Project(2011006B)supported by the Open Project of National Engineering Research Center of Near-Shape Forming for Metallic Materials,ChinaProject(FJ)supported by the CAS"100 talents"Plan
文摘A numerical model of foundry filling process was established based on the smoothed particle hydrodynamics(SPH)method.To mimic the constraints that the solid mold prescribes on the filling fluid,a composite treatment to the solid boundaries is elaborately designed.On solid boundary surfaces,boundary particles were set,which exert Lennard-Jones force on approaching fluid particles;inside the solid mold,ghost particles were arranged to complete the compact domain of near-boundary fluid particles.Water analog experiments were conducted in parallel with the model simulations.Very good agreement between experimental and simulation results demonstrates the success of model development.
基金Project(S2013040015492)supported by the Natural Science Foundation of Guangdong Province,ChinaProject(2007AA03Z240)supported by Hi-tech Research and Development Program of China
文摘Ru O2·n H2O film was deposited on tantalum foils by electrodeposition and heat treatment using Ru Cl3·3H2O as precursor.Surface morphology, composition change and cyclic voltammetry from precursor to amorphous and crystalline RuO2·n H2O films were studied by X-ray diffractometer, Fourier transformation infrared spectrometer, differential thermal analyzer, scanning electron microscope and electrochemical analyzer, respectively. The results show that the precursor was transformed gradually from amorphous to crystalline phase with temperature. When heat treated at 300 °C for 2h, RuO2·n H2O electrode surface gains mass of2.5 mg/cm2 with specific capacitance of 782 F/g. Besides, it is found that the specific capacitance of the film decreased by roughly20% with voltage scan rate increasing from 5 to 250 m V/s.
基金supported by the National Natural Science Foundation of China under Grant Nos.51271191,51571205 and 51401209
文摘Polycrystalline Cr2AlC coatings were prepared on M38G superalloy using a two-step method consisting of magnetron sputtering from Cr-Al-C composite targets at room temperature and subsequent annealing at 620 ℃. Particularly, various targets synthesized by hot pressing mixture of Cr, Al, and C powders at 650-1000 ℃ were used. It was found that regardless of the phase compositions and density of the com- posite targets, when the molar ratio of Cr:Al:C in the starting materials was 2:1:1, phase-pure crystalline Cr2AlC coatings were prepared by magnetron sputtering and post crystallization. The Cr2AIC coatings were dense and crack-free and had a duplex structure. The adhesion strength of the coating deposited on M38G superalloy from the 800 ℃ hot-pressed target and then annealed at 620 ℃ for 20 h in Ar exceeded 82 ± 6 MPa, while its hardness was 12 ± 3 GPa.
基金financially supported by the National Natural Science Foundation of China(U 1507123)the Foundation from Qinghai Science and Technology Department(2014-HZ-817)Kunlun Scholar Award Program of Qinghai Province
文摘Calcium sulfate whiskers(CSWs) modified with glutaraldehyde-crosslinked poly(vinyl alcohol)(PVA) or traditional surface modifiers,including silane coupling agent,titanate coupling agent and stearic acid,were used to strengthen poly(vinyl chloride)(PVC),and the morphologies,mechanical and heat resistant properties of the resulting composites were compared.The results clearly show that glutaraldehyde cross-linked PVA modified CSW/PVC composite(c PVA@CSW/PVC) has the strongest interfacial interaction,good and stable mechanical and heat resistant properties.Nielsen's modified Kerner's equation for Young's modulus is better than other models examined for the CSW/PVC composites.The half debonding angle θ of c PVA@CSW/PVC composite is lower than that of other composites except silane coupling agent modified CSW/PVC composites,indicating a very strong interfacial adhesion between c PVA@CSW and PVC.In general,cross-linked PVA is effective and environmentally friendly in modifying inorganic fillers.
文摘A silane containing isocynate groups(3-(trimethoxysilyl) propyl cyanic acid ester,NCO) associated with hexamethyldisilazane(HDMS) is used to modify the surface of poly-(p-phenylene terephthalamide)(PPTA) pulps. As concerns surface chemistry,Attenuated Total Reflection Flourier Transformed Infrared Spectroscopy(ATR FT-IR) and X-ray photoelectron spectroscopy(XPS) confirm that NCO associated with HDMS silylated PPTA pulp surface successfully. While the modified PPTA pulps are used as reinforcing fillers for silicone composites,the dispersibility and storage stability of the composites are improved as Mooney testing indicated. The silicone composites filled with modified PPTA pulps present a higher tensile strength and much higher broken elongation(3.30 MPa and 166.54%) than that with unmodified pulps(3.08 MPa and 68.47%),respectively.