WUSCHEL-related homeobox(WOX)transcription factors play a crucial role in lateral organ development in several plant species;however,their precise functions in soybean(Glycine max[L.]Merr.)were unclear.Here,we identif...WUSCHEL-related homeobox(WOX)transcription factors play a crucial role in lateral organ development in several plant species;however,their precise functions in soybean(Glycine max[L.]Merr.)were unclear.Here,we identified two independent multi-leaflet soybean mutants,mlw48-8 and mlw48-161,from a CRISPR/Cas9-engineered mutant library in the Williams 82 background.Both mutants exhibited irregular leaf margins,and the upper leaves were narrow and almost lanceolate at maturity.Molecular analysis revealed that these are allelic mutants with independent mutations in the WUSCHEL-related homeobox1(GmWOX1A)gene.A transcriptome analysis demonstrated that GmWOX1A modulates the expression of auxin-and leaf development–related genes.Yeast two-hybrid and split-luciferase complementation imaging assays revealed that GmWOX1A interacts with the YABBY family protein GmYAB5,providing further evidence of its potential involvement in leaf development.Notably,the mlw48-161 mutant showed an increased seed number per plant.Consequently,our study not only provides valuable insights into the role of GmWOX1A in soybean leaf development but also offers a potential strategy for high-yield breeding.展开更多
Per-and polyfluorinated alkyl substances(PFASs) are commonly used in industrial processes and daily life products.Because they are persistent, they accumulate in the environment, wildlife and humans.Although many stud...Per-and polyfluorinated alkyl substances(PFASs) are commonly used in industrial processes and daily life products.Because they are persistent, they accumulate in the environment, wildlife and humans.Although many studies have focused on two of the most representative PFASs, PFOS and PFOA, the potential toxicity of short-chain PFASs has not yet been given sufficient attention.We used a battery of assays to evaluate the toxicity of several four-carbon and six-carbon perfluorinated sulfonates and carboxyl acids(PFBS,PFHxS, PFBA and PFHxA), with a human mesenchymal stem cell(hMSC) system.Our results demonstrate significant cyto-and potential developmental toxicity for all the compounds analyzed, with shared but also distinct mechanisms of toxicity.Moreover, the effects of PFBS and PFHxS were stronger than those of PFBA and PFHxA, but occurred at higher doses compared to PFOS or PFOA.展开更多
基金supported by the Major Project of National Agricultural Science and Technology of China,the National Natural Science Foundation of China (32171965,32072091,31271750)the Core Technology Development for Breeding Program of Jiangsu Province (JBGS-2021-014)Collaborative Innovation Center for Modern Crop Production Co-sponsored by Province and Ministry (CIC-MCP)Program.
文摘WUSCHEL-related homeobox(WOX)transcription factors play a crucial role in lateral organ development in several plant species;however,their precise functions in soybean(Glycine max[L.]Merr.)were unclear.Here,we identified two independent multi-leaflet soybean mutants,mlw48-8 and mlw48-161,from a CRISPR/Cas9-engineered mutant library in the Williams 82 background.Both mutants exhibited irregular leaf margins,and the upper leaves were narrow and almost lanceolate at maturity.Molecular analysis revealed that these are allelic mutants with independent mutations in the WUSCHEL-related homeobox1(GmWOX1A)gene.A transcriptome analysis demonstrated that GmWOX1A modulates the expression of auxin-and leaf development–related genes.Yeast two-hybrid and split-luciferase complementation imaging assays revealed that GmWOX1A interacts with the YABBY family protein GmYAB5,providing further evidence of its potential involvement in leaf development.Notably,the mlw48-161 mutant showed an increased seed number per plant.Consequently,our study not only provides valuable insights into the role of GmWOX1A in soybean leaf development but also offers a potential strategy for high-yield breeding.
基金supported by the National Natural Science Foundation of China (Nos.21876197, 21577166, 21707160)the Chinese Academy of Sciences (Nos.XDB14040301, 29[2015]30, QYZDJ-SSW-DQC017)the K.C.Wong Education Foundation.
文摘Per-and polyfluorinated alkyl substances(PFASs) are commonly used in industrial processes and daily life products.Because they are persistent, they accumulate in the environment, wildlife and humans.Although many studies have focused on two of the most representative PFASs, PFOS and PFOA, the potential toxicity of short-chain PFASs has not yet been given sufficient attention.We used a battery of assays to evaluate the toxicity of several four-carbon and six-carbon perfluorinated sulfonates and carboxyl acids(PFBS,PFHxS, PFBA and PFHxA), with a human mesenchymal stem cell(hMSC) system.Our results demonstrate significant cyto-and potential developmental toxicity for all the compounds analyzed, with shared but also distinct mechanisms of toxicity.Moreover, the effects of PFBS and PFHxS were stronger than those of PFBA and PFHxA, but occurred at higher doses compared to PFOS or PFOA.