Images are the most important carrier of human information. Moreover, how to safely transmit digital imagesthrough public channels has become an urgent problem. In this paper, we propose a novel image encryptionalgori...Images are the most important carrier of human information. Moreover, how to safely transmit digital imagesthrough public channels has become an urgent problem. In this paper, we propose a novel image encryptionalgorithm, called chaotic compressive sensing (CS) encryption (CCSE), which can not only improve the efficiencyof image transmission but also introduce the high security of the chaotic system. Specifically, the proposed CCSEcan fully leverage the advantages of the Chebyshev chaotic system and CS, enabling it to withstand various attacks,such as differential attacks, and exhibit robustness. First, we use a sparse trans-form to sparse the plaintext imageand then use theArnold transformto perturb the image pixels. After that,we elaborate aChebyshev Toeplitz chaoticsensing matrix for CCSE. By using this Toeplitz matrix, the perturbed image is compressed and sampled to reducethe transmission bandwidth and the amount of data. Finally, a bilateral diffusion operator and a chaotic encryptionoperator are used to perturb and expand the image pixels to change the pixel position and value of the compressedimage, and ultimately obtain an encrypted image. Experimental results show that our method can be resistant tovarious attacks, such as the statistical attack and noise attack, and can outperform its current competitors.展开更多
With the advent of the information security era,it is necessary to guarantee the privacy,accuracy,and dependable transfer of pictures.This study presents a new approach to the encryption and compression of color image...With the advent of the information security era,it is necessary to guarantee the privacy,accuracy,and dependable transfer of pictures.This study presents a new approach to the encryption and compression of color images.It is predicated on 2D compressed sensing(CS)and the hyperchaotic system.First,an optimized Arnold scrambling algorithm is applied to the initial color images to ensure strong security.Then,the processed images are con-currently encrypted and compressed using 2D CS.Among them,chaotic sequences replace traditional random measurement matrices to increase the system’s security.Third,the processed images are re-encrypted using a combination of permutation and diffusion algorithms.In addition,the 2D projected gradient with an embedding decryption(2DPG-ED)algorithm is used to reconstruct images.Compared with the traditional reconstruction algorithm,the 2DPG-ED algorithm can improve security and reduce computational complexity.Furthermore,it has better robustness.The experimental outcome and the performance analysis indicate that this algorithm can withstand malicious attacks and prove the method is effective.展开更多
We propose a fast,adaptive multiscale resolution spectral measurement method based on compressed sensing.The method can apply variable measurement resolution over the entire spectral range to reduce the measurement ti...We propose a fast,adaptive multiscale resolution spectral measurement method based on compressed sensing.The method can apply variable measurement resolution over the entire spectral range to reduce the measurement time by over 75%compared to a global high-resolution measurement.Mimicking the characteristics of the human retina system,the resolution distribution follows the principle of gradually decreasing.The system allows the spectral peaks of interest to be captured dynamically or to be specified a priori by a user.The system was tested by measuring single and dual spectral peaks,and the results of spectral peaks are consistent with those of global high-resolution measurements.展开更多
A novel image encryption scheme based on parallel compressive sensing and edge detection embedding technology is proposed to improve visual security. Firstly, the plain image is sparsely represented using the discrete...A novel image encryption scheme based on parallel compressive sensing and edge detection embedding technology is proposed to improve visual security. Firstly, the plain image is sparsely represented using the discrete wavelet transform.Then, the coefficient matrix is scrambled and compressed to obtain a size-reduced image using the Fisher–Yates shuffle and parallel compressive sensing. Subsequently, to increase the security of the proposed algorithm, the compressed image is re-encrypted through permutation and diffusion to obtain a noise-like secret image. Finally, an adaptive embedding method based on edge detection for different carrier images is proposed to generate a visually meaningful cipher image. To improve the plaintext sensitivity of the algorithm, the counter mode is combined with the hash function to generate keys for chaotic systems. Additionally, an effective permutation method is designed to scramble the pixels of the compressed image in the re-encryption stage. The simulation results and analyses demonstrate that the proposed algorithm performs well in terms of visual security and decryption quality.展开更多
In airborne array synthetic aperture radar(SAR), the three-dimensional(3D) imaging performance and cross-track resolution depends on the length of the equivalent array. In this paper, Barker sequence criterion is used...In airborne array synthetic aperture radar(SAR), the three-dimensional(3D) imaging performance and cross-track resolution depends on the length of the equivalent array. In this paper, Barker sequence criterion is used for sparse flight sampling of airborne array SAR, in order to obtain high cross-track resolution in as few times of flights as possible. Under each flight, the imaging algorithm of back projection(BP) and the data extraction method based on modified uniformly redundant arrays(MURAs) are utilized to obtain complex 3D image pairs. To solve the side-lobe noise in images, the interferometry between each image pair is implemented, and compressed sensing(CS) reconstruction is adopted in the frequency domain. Furthermore, to restore the geometrical relationship between each flight, the phase information corresponding to negative MURA is compensated on each single-pass image reconstructed by CS. Finally,by coherent accumulation of each complex image, the high resolution in cross-track direction is obtained. Simulations and experiments in X-band verify the availability.展开更多
A novel visually meaningful image encryption algorithm is proposed based on a hyperchaotic system and compressive sensing(CS), which aims to improve the visual security of steganographic image and decrypted quality. F...A novel visually meaningful image encryption algorithm is proposed based on a hyperchaotic system and compressive sensing(CS), which aims to improve the visual security of steganographic image and decrypted quality. First, a dynamic spiral block scrambling is designed to encrypt the sparse matrix generated by performing discrete wavelet transform(DWT)on the plain image. Then, the encrypted image is compressed and quantified to obtain the noise-like cipher image. Then the cipher image is embedded into the alpha channel of the carrier image in portable network graphics(PNG) format to generate the visually meaningful steganographic image. In our scheme, the hyperchaotic Lorenz system controlled by the hash value of plain image is utilized to construct the scrambling matrix, the measurement matrix and the embedding matrix to achieve higher security. In addition, compared with other existing encryption algorithms, the proposed PNG-based embedding method can blindly extract the cipher image, thus effectively reducing the transmission cost and storage space. Finally, the experimental results indicate that the proposed encryption algorithm has very high visual security.展开更多
Plug-and-play priors are popular for solving illposed imaging inverse problems. Recent efforts indicate that the convergence guarantee of the imaging algorithms using plug-andplay priors relies on the assumption of bo...Plug-and-play priors are popular for solving illposed imaging inverse problems. Recent efforts indicate that the convergence guarantee of the imaging algorithms using plug-andplay priors relies on the assumption of bounded denoisers. However, the bounded properties of existing plugged Gaussian denoisers have not been proven explicitly. To bridge this gap, we detail a novel provable bounded denoiser termed as BMDual,which combines a trainable denoiser using dual tight frames and the well-known block-matching and 3D filtering(BM3D)denoiser. We incorporate multiple dual frames utilized by BMDual into a novel regularization model induced by a solver. The proposed regularization model is utilized for compressed sensing magnetic resonance imaging(CSMRI). We theoretically show the bound of the BMDual denoiser, the bounded gradient of the CSMRI data-fidelity function, and further demonstrate that the proposed CSMRI algorithm converges. Experimental results also demonstrate that the proposed algorithm has a good convergence behavior, and show the effectiveness of the proposed algorithm.展开更多
Some existing image encryption schemes use simple low-dimensional chaotic systems, which makes the algorithms insecure and vulnerable to brute force attacks and cracking. Some algorithms have issues such as weak corre...Some existing image encryption schemes use simple low-dimensional chaotic systems, which makes the algorithms insecure and vulnerable to brute force attacks and cracking. Some algorithms have issues such as weak correlation with plaintext images, poor image reconstruction quality, and low efficiency in transmission and storage. To solve these issues,this paper proposes an optical image encryption algorithm based on a new four-dimensional memristive hyperchaotic system(4D MHS) and compressed sensing(CS). Firstly, this paper proposes a new 4D MHS, which has larger key space, richer dynamic behavior, and more complex hyperchaotic characteristics. The introduction of CS can reduce the image size and the transmission burden of hardware devices. The introduction of double random phase encoding(DRPE) enables this algorithm has the ability of parallel data processing and multi-dimensional coding space, and the hyperchaotic characteristics of 4D MHS make up for the nonlinear deficiency of DRPE. Secondly, a construction method of the deterministic chaotic measurement matrix(DCMM) is proposed. Using DCMM can not only save a lot of transmission bandwidth and storage space, but also ensure good quality of reconstructed images. Thirdly, the confusion method and diffusion method proposed are related to plaintext images, which require both four hyperchaotic sequences of 4D MHS and row and column keys based on plaintext images. The generation process of hyperchaotic sequences is closely related to the hash value of plaintext images. Therefore, this algorithm has high sensitivity to plaintext images. The experimental testing and comparative analysis results show that proposed algorithm has good security and effectiveness.展开更多
Compressed sensing(CS),as an efficient data transmission method,has achieved great success in the field of data transmission such as image,video and text.It can robustly recover signals from fewer Measurements,effecti...Compressed sensing(CS),as an efficient data transmission method,has achieved great success in the field of data transmission such as image,video and text.It can robustly recover signals from fewer Measurements,effectively alleviating the bandwidth pressure during data transmission.However,CS has many shortcomings in the transmission of hyperspectral image(HSI)data.This work aims to consider the application of CS in the transmission of hyperspectral image(HSI)data,and provides a feasible research scheme for CS of HSI data.HSI has rich spectral information and spatial information in bands,which can reflect the physical properties of the target.Most of the hyperspectral image compressed sensing(HSICS)algorithms cannot effectively use the inter-band information of HSI,resulting in poor reconstruction effects.In this paper,A three-stage hyperspectral image compression sensing algorithm(Three-stages HSICS)is proposed to obtain intra-band and inter-band characteristics of HSI,which can improve the reconstruction accuracy of HSI.Here,we establish a multi-objective band selection(Mop-BS)model,amulti-hypothesis prediction(MHP)model and a residual sparse(ReWSR)model for HSI,and use a staged reconstruction method to restore the compressed HSI.The simulation results show that the three-stage HSICS successfully improves the reconstruction accuracy of HSICS,and it performs best among all comparison algorithms.展开更多
The video compression sensing method based onmulti hypothesis has attracted extensive attention in the research of video codec with limited resources.However,the formation of high-quality prediction blocks in the mult...The video compression sensing method based onmulti hypothesis has attracted extensive attention in the research of video codec with limited resources.However,the formation of high-quality prediction blocks in the multi hypothesis prediction stage is a challenging task.To resolve this problem,this paper constructs a novel compressed sensing-based high-quality adaptive video reconstruction optimizationmethod.Itmainly includes the optimization of prediction blocks(OPBS),the selection of searchwindows and the use of neighborhood information.Specifically,the OPBS consists of two parts:the selection of blocks and the optimization of prediction blocks.We combine the high-quality optimization reconstruction of foreground block with the residual reconstruction of the background block to improve the overall reconstruction effect of the video sequence.In addition,most of the existing methods based on predictive residual reconstruction ignore the impact of search windows and reference frames on performance.Therefore,Block-level search window(BSW)is constructed to cover the position of the optimal hypothesis block as much as possible.To maximize the availability of reference frames,Nearby reference frame information(NRFI)is designed to reconstruct the current block.The proposed method effectively suppresses the influence of the fluctuation of the prediction block on reconstruction and improves the reconstruction performance.Experimental results showthat the proposed compressed sensing-based high-quality adaptive video reconstruction optimization method significantly improves the reconstruction performance in both objective and supervisor quality.展开更多
Aiming at the problem that most of the cables in the power collection systemof offshore wind farms are buried deep in the seabed,whichmakes it difficult to detect faults,this paper proposes a two-step fault location m...Aiming at the problem that most of the cables in the power collection systemof offshore wind farms are buried deep in the seabed,whichmakes it difficult to detect faults,this paper proposes a two-step fault location method based on compressed sensing and ranging equation.The first step is to determine the fault zone through compressed sensing,and improve the datameasurement,dictionary design and algorithmreconstruction:Firstly,the phase-locked loop trigonometric functionmethod is used to suppress the spike phenomenon when extracting the fault voltage,so that the extracted voltage valuewillnot have a large error due to the voltage fluctuation.Secondly,theλ-NIM dictionary is designed by using the node impedancematrix and the fault location coefficient to further reduce the influence of pseudo-fault points.Finally,the CoSaMP algorithmis improved with the generalized Jaccard coefficient to improve the reconstruction accuracy.The second step is to use the ranging equation to accurately locate the asymmetric fault of the wind farm collection system on the basis of determining the fault interval.The simulation results show that the proposedmethod ismore accurate than the compressedsensingmethod andimpedancemethod in fault section location and fault location accuracy,the relative error is reduced from 0.75%to 0.4%,and has a certain anti-noise ability.展开更多
Background:In congenital heart disease(CHD)patients,detailed three-dimensional anatomy depiction plays a pivotal role for diagnosis and therapeutical decision making.Hence,the present study investigated the applicabil...Background:In congenital heart disease(CHD)patients,detailed three-dimensional anatomy depiction plays a pivotal role for diagnosis and therapeutical decision making.Hence,the present study investigated the applicability of an advanced cardiovascular magnetic resonance(CMR)whole heart imaging approach utilizing nonselective excitation and compressed sensing for anatomical assessment and interventional guidance of CHD patients in comparison to conventional dynamic CMR angiography.Methods:86 consecutive pediatric patients and adults with congenital heart disease(age,1 to 74 years;mean,35 years)underwent CMR imaging including a freebreathing,ECG-triggered 3D nonselective SSFP whole heart acquisition using compressed SENSE(nsWHcs).Anatomical assessability and signal intensity ratio(SIR)measurements were compared with conventional dynamic 3D-/4D-MR angiography.Results:The most frequent diagnoses were partial anomalous pulmonary venous drainage(17/86,20%),transposition of the great arteries(15/86,17%),tetralogy of Fallot(12/86,14%),and a single ventricle(7/86,8%).Image quality of nsWHcs was rated as excellent/good in 98%of patients.nsWHcs resulted in a reliable depiction of all large thoracic vessels(anatomic assessability,99%–100%)and the proximal segments of coronary arteries and coronary sinus(>90%).nsWHcs achieved a homogenously distributed SIR in all cardiac cavities and thoracic vessels without a significant difference between pulmonary and systemic circulation(10.9±3.5 and 10.6±3.4;p=0.15),while 3D angiography showed significantly increased SIR for targeted vs.non-targeted circulation(PA-angiography,15.2±8.1 vs.5.8±3.6,p<0.001;PV-angiography,7.0±3.9 vs.17.3±6.8,p<0.001).Conclusions:The proposed nsWHcs imaging approach provided a consistently high image quality and a homogeneous signal intensity distribution within the pulmonary and systemic circulation in pediatric patients and adults with a wide spectrum of congenital heart diseases.nsWHcs enabled detailed anatomical assessment and three-dimensional reconstruction of all cardiac cavities and large thoracic vessels and can be regarded particularly useful for preprocedural planning and interventional guidance in CHD patients.展开更多
With the development of multi-signal monitoring technology,the research on multiple signal analysis and processing has become a hot subject.Mechanical equipment often works under variable working conditions,and the ac...With the development of multi-signal monitoring technology,the research on multiple signal analysis and processing has become a hot subject.Mechanical equipment often works under variable working conditions,and the acquired vibration signals are often non-stationary and nonlinear,which are difficult to be processed by traditional analysis methods.In order to solve the noise reduction problem of multiple signals under variable speed,a COT-DCS method combining the Computed Order Tracking(COT)based on Chirplet Path Pursuit(CPP)and Distributed Compressed Sensing(DCS)is proposed.Firstly,the instantaneous frequency(IF)is extracted by CPP,and the speed is obtained by fitting.Then,the speed is used for equal angle sampling of time-domain signals,and angle-domain signals are obtained by COT without a tachometer to eliminate the nonstationarity,and the angledomain signals are compressed and reconstructed by DCS to achieve noise reduction of multiple signals.The accuracy of the CPP method is verified by simulated,experimental signals and compared with some existing IF extraction methods.The COT method also shows good signal stabilization ability through simulation and experiment.Finally,combined with the comparative test of the other two algorithms and four noise reduction effect indicators,the COT-DCS based on the CPP method combines the advantages of the two algorithms and has better noise reduction effect and stability.It is shown that this method is an effective multi-signal noise reduction method.展开更多
This study is to compare three-dimensional(3D)isotropic T2-weighted magnetic resonance imaging(MRI)with compressed sensing-sampling perfection with application optimized contrast(CS-SPACE)and the conventional image(3D...This study is to compare three-dimensional(3D)isotropic T2-weighted magnetic resonance imaging(MRI)with compressed sensing-sampling perfection with application optimized contrast(CS-SPACE)and the conventional image(3D-SPACE)sequence in terms of image quality,estimated signal-to-noise ratio(SNR),relative contrast-to-noise ratio(CNR),and the lesions’conspicuous of the female pelvis.Thirty-six females(age:51,28-73)with cervical carcinoma(n=20),rectal carcinoma(n=7),or uterine fibroid(n=9)were included.Patients underwent magnetic resonance(MR)imaging at a 3T scanner with the sequences of 3D-SPACE,CS-SPACE,and twodimensional(2D)T2-weighted turbo-spin echo(TSE).Quantitative analyses of estimated SNR and relative CNR between tumors and other tissues,image quality,and tissue conspicuity were performed.Two radiologists assessed the difference in diagnostic findings for carcinoma.Quantitative values and qualitative scores were analyzed,respectively.The estimated SNR and the relative CNR of tumor-to-muscle obturator internus,tumor-to-myometrium,and myometrium-to-muscle obturator internus was comparable between 3D-SPACE and CS-SPACE.The overall image quality and the conspicuity of the lesion scores of the CS-SPACE were higher than that of the 3D-SPACE(P<0.01).The CS-SPACE sequence offers shorter scan time,fewer artifacts,and comparable SNR and CNR to conventional 3D-SPACE,and has the potential to improve the performance of T2-weighted images.展开更多
This paper investigates the deformation and fracture propagation of sandstone specimen under uniaxial compression using the distributed fiber optic strain sensing(DFOSS)technology.It shows that the DFOSS-based circumf...This paper investigates the deformation and fracture propagation of sandstone specimen under uniaxial compression using the distributed fiber optic strain sensing(DFOSS)technology.It shows that the DFOSS-based circumferential strains are in agreement with the data monitored with the traditional strain gage.The DFOSS successfully scans the full-field view of axial and circumferential strains on the specimen surface.The spatiotemporal strain measurement based on DFOSS manifests crack closure and elastoplastic deformation,detects initialization of microcrack nucleation,and identifies strain localization within the specimen.The DFOSS well observes the effects of rock heterogeneity on rock deformation.The advantage of DFOSS-based strain acquisition includes the high spatiotemporal resolution of signals and the ability of full-surface strain scanning.The introduction to the DFOSS technology yields a better understanding of the rock damage process under uniaxial compression.展开更多
EIT (electrical impedance tomography) problem should be represented by a group of partial differential equation, in numerical calculation: the nonlinear problem should be linearization approximately, and then linea...EIT (electrical impedance tomography) problem should be represented by a group of partial differential equation, in numerical calculation: the nonlinear problem should be linearization approximately, and then linear equations set is obtained, so EIT image reconstruct problem should be considered as a classical ill-posed, ill-conditioned, linear inverse problem. Its biggest problem is the number of unknown is much more than the number of the equations, this result in the low imaging quality. Especially, it can not imaging in center area. For this problem, we induce the CS technique into EIT image reconstruction algorithm. The main contributions in this paper are: firstly, built up the relationship between CS and EIT definitely; secondly, sparse reconstruction is a critical step in CS, built up a general sparse regularization model based on EIT; finally, gives out some EIT imaging models based on sparse regularization method. For different scenarios, compared with traditional Tikhonov regularization (smooth regularization) method, sparse reconstruction method is not only better at anti-noise, and imaging in center area, but also faster and better resolution.展开更多
To overcome the low efficiency of conventional confocal Raman spectroscopy,many efforts have been devoted to parallelizing the Raman excitation and acquisition,in which the scattering from multiple foci is projected o...To overcome the low efficiency of conventional confocal Raman spectroscopy,many efforts have been devoted to parallelizing the Raman excitation and acquisition,in which the scattering from multiple foci is projected onto different locations on a spectrometer's CCD,along either its vertical,horizontal dimension,or even both.While the latter projection scheme relieves the limitation on the row numbers of the CCD,the spectra of multiple foci are recorded in one spectral channel,resulting in spectral overlapping.Here,we developed a method under a com-pressive sensing framework to demultiplex the superimposed spectra of multiple cells during their dynamic processes.Unlike the previous methods which ignore the information connection be-tween the spectra of the cells recorded at different time,the proposed method utilizes a prior that a cell's spectra acquired at different time have the same sparsity structure in their principal components.Rather than independently demultiplexing the mixed spectra at the individual time intervals,the method demultiplexes the whole spectral sequence acquired continuously during the dynamic process.By penalizing the sparsity combined from all time intervals,the collaborative optimization of the inversion problem gave more accurate recovery results.The performances of the method were substantiated by a 1D Raman tweezers array,which monitored the germination of multiple bacterial spores.The method can be extended to the monitoring of many living cells randomly scattering on a coverslip,and has a potential to improve the throughput by a few orders.展开更多
A sparsifying transform for use in Compressed Sensing (CS) is a vital piece of image reconstruction for Magnetic Resonance Imaging (MRI). Previously, Translation Invariant Wavelet Transforms (TIWT) have been shown to ...A sparsifying transform for use in Compressed Sensing (CS) is a vital piece of image reconstruction for Magnetic Resonance Imaging (MRI). Previously, Translation Invariant Wavelet Transforms (TIWT) have been shown to perform exceedingly well in CS by reducing repetitive line pattern image artifacts that may be observed when using orthogonal wavelets. To further establish its validity as a good sparsifying transform, the TIWT is comprehensively investigated and compared with Total Variation (TV), using six under-sampling patterns through simulation. Both trajectory and random mask based under-sampling of MRI data are reconstructed to demonstrate a comprehensive coverage of tests. Notably, the TIWT in CS reconstruction performs well for all varieties of under-sampling patterns tested, even for cases where TV does not improve the mean squared error. This improved Image Quality (IQ) gives confidence in applying this transform to more CS applications which will contribute to an even greater speed-up of a CS MRI scan. High vs low resolution time of flight MRI CS re-constructions are also analyzed showing how partial Fourier acquisitions must be carefully addressed in CS to prevent loss of IQ. In the spirit of reproducible research, novel software is introduced here as FastTestCS. It is a helpful tool to quickly develop and perform tests with many CS customizations. Easy integration and testing for the TIWT and TV minimization are exemplified. Simulations of 3D MRI datasets are shown to be efficiently distributed as a scalable solution for large studies. Comparisons in reconstruction computation time are made between the Wavelab toolbox and Gnu Scientific Library in FastTestCS that show a significant time savings factor of 60×. The addition of FastTestCS is proven to be a fast, flexible, portable and reproducible simulation aid for CS research.展开更多
The estimation of sparse underwater acoustic channels with a large time delay spread is investigated under the framework of compressed sensing. For these types of channels, the excessively long impulse response will s...The estimation of sparse underwater acoustic channels with a large time delay spread is investigated under the framework of compressed sensing. For these types of channels, the excessively long impulse response will significantly degrade the convergence rate and tracking capability of the traditional estimation algorithms such as least squares (LS), while excluding the use of the delay-Doppler spread function due to huge computational complexity. By constructing a Toeplitz matrix with a training sequence as the measurement matrix, the estimation problem of long sparse acoustic channels is formulated into a compressed sensing problem to facilitate the efficient exploitation of sparsity. Furthermore, unlike the traditional l1 norm or exponent-based approximation l0 norm sparse recovery strategy, a novel variant of approximate l0 norm called AL0 is proposed, minimization of which leads to the derivation of a hybrid approach by iteratively projecting the steepest descent solution to the feasible set. Numerical simulations as well as sea trial experiments are compared and analyzed to demonstrate the superior performance of the proposed algorithm.展开更多
In order to reduce the pilot number and improve spectral efficiency, recently emerged compressive sensing (CS) is applied to the digital broadcast channel estimation. According to the six channel profiles of the Eur...In order to reduce the pilot number and improve spectral efficiency, recently emerged compressive sensing (CS) is applied to the digital broadcast channel estimation. According to the six channel profiles of the European Telecommunication Standards Institute(ETSI) digital radio mondiale (DRM) standard, the subspace pursuit (SP) algorithm is employed for delay spread and attenuation estimation of each path in the case where the channel profile is identified and the multipath number is known. The stop condition for SP is that the sparsity of the estimation equals the multipath number. For the case where the multipath number is unknown, the orthogonal matching pursuit (OMP) algorithm is employed for channel estimation, while the stop condition is that the estimation achieves the noise variance. Simulation results show that with the same number of pilots, CS algorithms outperform the traditional cubic-spline-interpolation-based least squares (LS) channel estimation. SP is also demonstrated to be better than OMP when the multipath number is known as a priori.展开更多
基金the National Natural Science Foundation of China(Nos.62002028,62102040 and 62202066).
文摘Images are the most important carrier of human information. Moreover, how to safely transmit digital imagesthrough public channels has become an urgent problem. In this paper, we propose a novel image encryptionalgorithm, called chaotic compressive sensing (CS) encryption (CCSE), which can not only improve the efficiencyof image transmission but also introduce the high security of the chaotic system. Specifically, the proposed CCSEcan fully leverage the advantages of the Chebyshev chaotic system and CS, enabling it to withstand various attacks,such as differential attacks, and exhibit robustness. First, we use a sparse trans-form to sparse the plaintext imageand then use theArnold transformto perturb the image pixels. After that,we elaborate aChebyshev Toeplitz chaoticsensing matrix for CCSE. By using this Toeplitz matrix, the perturbed image is compressed and sampled to reducethe transmission bandwidth and the amount of data. Finally, a bilateral diffusion operator and a chaotic encryptionoperator are used to perturb and expand the image pixels to change the pixel position and value of the compressedimage, and ultimately obtain an encrypted image. Experimental results show that our method can be resistant tovarious attacks, such as the statistical attack and noise attack, and can outperform its current competitors.
基金This work was supported in part by the National Natural Science Foundation of China under Grants 71571091,71771112the State Key Laboratory of Synthetical Automation for Process Industries Fundamental Research Funds under Grant PAL-N201801the Excellent Talent Training Project of University of Science and Technology Liaoning under Grant 2019RC05.
文摘With the advent of the information security era,it is necessary to guarantee the privacy,accuracy,and dependable transfer of pictures.This study presents a new approach to the encryption and compression of color images.It is predicated on 2D compressed sensing(CS)and the hyperchaotic system.First,an optimized Arnold scrambling algorithm is applied to the initial color images to ensure strong security.Then,the processed images are con-currently encrypted and compressed using 2D CS.Among them,chaotic sequences replace traditional random measurement matrices to increase the system’s security.Third,the processed images are re-encrypted using a combination of permutation and diffusion algorithms.In addition,the 2D projected gradient with an embedding decryption(2DPG-ED)algorithm is used to reconstruct images.Compared with the traditional reconstruction algorithm,the 2DPG-ED algorithm can improve security and reduce computational complexity.Furthermore,it has better robustness.The experimental outcome and the performance analysis indicate that this algorithm can withstand malicious attacks and prove the method is effective.
基金Project supported by the Natural Science Foundation of Shandong Province,China(Grant Nos.ZR2020MF119 and ZR2020MA082)the National Natural Science Foundation of China(Grant No.62002208)the National Key Research and Development Program of China(Grant No.2018YFB0504302).
文摘We propose a fast,adaptive multiscale resolution spectral measurement method based on compressed sensing.The method can apply variable measurement resolution over the entire spectral range to reduce the measurement time by over 75%compared to a global high-resolution measurement.Mimicking the characteristics of the human retina system,the resolution distribution follows the principle of gradually decreasing.The system allows the spectral peaks of interest to be captured dynamically or to be specified a priori by a user.The system was tested by measuring single and dual spectral peaks,and the results of spectral peaks are consistent with those of global high-resolution measurements.
基金supported by the Key Area R&D Program of Guangdong Province (Grant No.2022B0701180001)the National Natural Science Foundation of China (Grant No.61801127)+1 种基金the Science Technology Planning Project of Guangdong Province,China (Grant Nos.2019B010140002 and 2020B111110002)the Guangdong-Hong Kong-Macao Joint Innovation Field Project (Grant No.2021A0505080006)。
文摘A novel image encryption scheme based on parallel compressive sensing and edge detection embedding technology is proposed to improve visual security. Firstly, the plain image is sparsely represented using the discrete wavelet transform.Then, the coefficient matrix is scrambled and compressed to obtain a size-reduced image using the Fisher–Yates shuffle and parallel compressive sensing. Subsequently, to increase the security of the proposed algorithm, the compressed image is re-encrypted through permutation and diffusion to obtain a noise-like secret image. Finally, an adaptive embedding method based on edge detection for different carrier images is proposed to generate a visually meaningful cipher image. To improve the plaintext sensitivity of the algorithm, the counter mode is combined with the hash function to generate keys for chaotic systems. Additionally, an effective permutation method is designed to scramble the pixels of the compressed image in the re-encryption stage. The simulation results and analyses demonstrate that the proposed algorithm performs well in terms of visual security and decryption quality.
文摘In airborne array synthetic aperture radar(SAR), the three-dimensional(3D) imaging performance and cross-track resolution depends on the length of the equivalent array. In this paper, Barker sequence criterion is used for sparse flight sampling of airborne array SAR, in order to obtain high cross-track resolution in as few times of flights as possible. Under each flight, the imaging algorithm of back projection(BP) and the data extraction method based on modified uniformly redundant arrays(MURAs) are utilized to obtain complex 3D image pairs. To solve the side-lobe noise in images, the interferometry between each image pair is implemented, and compressed sensing(CS) reconstruction is adopted in the frequency domain. Furthermore, to restore the geometrical relationship between each flight, the phase information corresponding to negative MURA is compensated on each single-pass image reconstructed by CS. Finally,by coherent accumulation of each complex image, the high resolution in cross-track direction is obtained. Simulations and experiments in X-band verify the availability.
基金supported by the National Natural Science Foundation of China (Grant No. 61672124)the Password Theory Project of the 13th Five-Year Plan National Cryptography Development Fund (Grant No. MMJJ20170203)+3 种基金Liaoning Province Science and Technology Innovation Leading Talents Program Project (Grant No. XLYC1802013)Key R&D Projects of Liaoning Province (Grant No. 2019020105JH2/103)Jinan City ‘20 Universities’ Funding Projects Introducing Innovation Team Program (Grant No. 2019GXRC031)Research Fund of Guangxi Key Lab of Multi-source Information Mining & Security (Grant No. MIMS20-M-02)。
文摘A novel visually meaningful image encryption algorithm is proposed based on a hyperchaotic system and compressive sensing(CS), which aims to improve the visual security of steganographic image and decrypted quality. First, a dynamic spiral block scrambling is designed to encrypt the sparse matrix generated by performing discrete wavelet transform(DWT)on the plain image. Then, the encrypted image is compressed and quantified to obtain the noise-like cipher image. Then the cipher image is embedded into the alpha channel of the carrier image in portable network graphics(PNG) format to generate the visually meaningful steganographic image. In our scheme, the hyperchaotic Lorenz system controlled by the hash value of plain image is utilized to construct the scrambling matrix, the measurement matrix and the embedding matrix to achieve higher security. In addition, compared with other existing encryption algorithms, the proposed PNG-based embedding method can blindly extract the cipher image, thus effectively reducing the transmission cost and storage space. Finally, the experimental results indicate that the proposed encryption algorithm has very high visual security.
基金supported in part by the National Natural Science Foundation of China (62371414,61901406)the Hebei Natural Science Foundation (F2020203025)+2 种基金the Young Talent Program of Universities and Colleges in Hebei Province (BJ2021044)the Hebei Key Laboratory Project (202250701010046)the Central Government Guides Local Science and Technology Development Fund Projects(216Z1602G)。
文摘Plug-and-play priors are popular for solving illposed imaging inverse problems. Recent efforts indicate that the convergence guarantee of the imaging algorithms using plug-andplay priors relies on the assumption of bounded denoisers. However, the bounded properties of existing plugged Gaussian denoisers have not been proven explicitly. To bridge this gap, we detail a novel provable bounded denoiser termed as BMDual,which combines a trainable denoiser using dual tight frames and the well-known block-matching and 3D filtering(BM3D)denoiser. We incorporate multiple dual frames utilized by BMDual into a novel regularization model induced by a solver. The proposed regularization model is utilized for compressed sensing magnetic resonance imaging(CSMRI). We theoretically show the bound of the BMDual denoiser, the bounded gradient of the CSMRI data-fidelity function, and further demonstrate that the proposed CSMRI algorithm converges. Experimental results also demonstrate that the proposed algorithm has a good convergence behavior, and show the effectiveness of the proposed algorithm.
文摘Some existing image encryption schemes use simple low-dimensional chaotic systems, which makes the algorithms insecure and vulnerable to brute force attacks and cracking. Some algorithms have issues such as weak correlation with plaintext images, poor image reconstruction quality, and low efficiency in transmission and storage. To solve these issues,this paper proposes an optical image encryption algorithm based on a new four-dimensional memristive hyperchaotic system(4D MHS) and compressed sensing(CS). Firstly, this paper proposes a new 4D MHS, which has larger key space, richer dynamic behavior, and more complex hyperchaotic characteristics. The introduction of CS can reduce the image size and the transmission burden of hardware devices. The introduction of double random phase encoding(DRPE) enables this algorithm has the ability of parallel data processing and multi-dimensional coding space, and the hyperchaotic characteristics of 4D MHS make up for the nonlinear deficiency of DRPE. Secondly, a construction method of the deterministic chaotic measurement matrix(DCMM) is proposed. Using DCMM can not only save a lot of transmission bandwidth and storage space, but also ensure good quality of reconstructed images. Thirdly, the confusion method and diffusion method proposed are related to plaintext images, which require both four hyperchaotic sequences of 4D MHS and row and column keys based on plaintext images. The generation process of hyperchaotic sequences is closely related to the hash value of plaintext images. Therefore, this algorithm has high sensitivity to plaintext images. The experimental testing and comparative analysis results show that proposed algorithm has good security and effectiveness.
基金supported by the National Natural Science Foundation of China under Grant No.61806138Key R&D program of Shanxi Province(High Technology)under Grant No.201903D121119Science and Technology Development Foundation of the Central Guiding Local under Grant No.YDZJSX2021A038.
文摘Compressed sensing(CS),as an efficient data transmission method,has achieved great success in the field of data transmission such as image,video and text.It can robustly recover signals from fewer Measurements,effectively alleviating the bandwidth pressure during data transmission.However,CS has many shortcomings in the transmission of hyperspectral image(HSI)data.This work aims to consider the application of CS in the transmission of hyperspectral image(HSI)data,and provides a feasible research scheme for CS of HSI data.HSI has rich spectral information and spatial information in bands,which can reflect the physical properties of the target.Most of the hyperspectral image compressed sensing(HSICS)algorithms cannot effectively use the inter-band information of HSI,resulting in poor reconstruction effects.In this paper,A three-stage hyperspectral image compression sensing algorithm(Three-stages HSICS)is proposed to obtain intra-band and inter-band characteristics of HSI,which can improve the reconstruction accuracy of HSI.Here,we establish a multi-objective band selection(Mop-BS)model,amulti-hypothesis prediction(MHP)model and a residual sparse(ReWSR)model for HSI,and use a staged reconstruction method to restore the compressed HSI.The simulation results show that the three-stage HSICS successfully improves the reconstruction accuracy of HSICS,and it performs best among all comparison algorithms.
基金supported by the National Natural Science Foundation of China under Grant No.61806138KeyR&DProgram of Shanxi Province(International Cooperation)under Grant No.201903D421048+1 种基金National Key Research and Development Program of China under Grant No.2018YFC1604000School Level Postgraduate Education Innovation Projects under Grant No.XCX212082.
文摘The video compression sensing method based onmulti hypothesis has attracted extensive attention in the research of video codec with limited resources.However,the formation of high-quality prediction blocks in the multi hypothesis prediction stage is a challenging task.To resolve this problem,this paper constructs a novel compressed sensing-based high-quality adaptive video reconstruction optimizationmethod.Itmainly includes the optimization of prediction blocks(OPBS),the selection of searchwindows and the use of neighborhood information.Specifically,the OPBS consists of two parts:the selection of blocks and the optimization of prediction blocks.We combine the high-quality optimization reconstruction of foreground block with the residual reconstruction of the background block to improve the overall reconstruction effect of the video sequence.In addition,most of the existing methods based on predictive residual reconstruction ignore the impact of search windows and reference frames on performance.Therefore,Block-level search window(BSW)is constructed to cover the position of the optimal hypothesis block as much as possible.To maximize the availability of reference frames,Nearby reference frame information(NRFI)is designed to reconstruct the current block.The proposed method effectively suppresses the influence of the fluctuation of the prediction block on reconstruction and improves the reconstruction performance.Experimental results showthat the proposed compressed sensing-based high-quality adaptive video reconstruction optimization method significantly improves the reconstruction performance in both objective and supervisor quality.
基金This work was partly supported by the National Natural Science Foundation of China(52177074).
文摘Aiming at the problem that most of the cables in the power collection systemof offshore wind farms are buried deep in the seabed,whichmakes it difficult to detect faults,this paper proposes a two-step fault location method based on compressed sensing and ranging equation.The first step is to determine the fault zone through compressed sensing,and improve the datameasurement,dictionary design and algorithmreconstruction:Firstly,the phase-locked loop trigonometric functionmethod is used to suppress the spike phenomenon when extracting the fault voltage,so that the extracted voltage valuewillnot have a large error due to the voltage fluctuation.Secondly,theλ-NIM dictionary is designed by using the node impedancematrix and the fault location coefficient to further reduce the influence of pseudo-fault points.Finally,the CoSaMP algorithmis improved with the generalized Jaccard coefficient to improve the reconstruction accuracy.The second step is to use the ranging equation to accurately locate the asymmetric fault of the wind farm collection system on the basis of determining the fault interval.The simulation results show that the proposedmethod ismore accurate than the compressedsensingmethod andimpedancemethod in fault section location and fault location accuracy,the relative error is reduced from 0.75%to 0.4%,and has a certain anti-noise ability.
文摘Background:In congenital heart disease(CHD)patients,detailed three-dimensional anatomy depiction plays a pivotal role for diagnosis and therapeutical decision making.Hence,the present study investigated the applicability of an advanced cardiovascular magnetic resonance(CMR)whole heart imaging approach utilizing nonselective excitation and compressed sensing for anatomical assessment and interventional guidance of CHD patients in comparison to conventional dynamic CMR angiography.Methods:86 consecutive pediatric patients and adults with congenital heart disease(age,1 to 74 years;mean,35 years)underwent CMR imaging including a freebreathing,ECG-triggered 3D nonselective SSFP whole heart acquisition using compressed SENSE(nsWHcs).Anatomical assessability and signal intensity ratio(SIR)measurements were compared with conventional dynamic 3D-/4D-MR angiography.Results:The most frequent diagnoses were partial anomalous pulmonary venous drainage(17/86,20%),transposition of the great arteries(15/86,17%),tetralogy of Fallot(12/86,14%),and a single ventricle(7/86,8%).Image quality of nsWHcs was rated as excellent/good in 98%of patients.nsWHcs resulted in a reliable depiction of all large thoracic vessels(anatomic assessability,99%–100%)and the proximal segments of coronary arteries and coronary sinus(>90%).nsWHcs achieved a homogenously distributed SIR in all cardiac cavities and thoracic vessels without a significant difference between pulmonary and systemic circulation(10.9±3.5 and 10.6±3.4;p=0.15),while 3D angiography showed significantly increased SIR for targeted vs.non-targeted circulation(PA-angiography,15.2±8.1 vs.5.8±3.6,p<0.001;PV-angiography,7.0±3.9 vs.17.3±6.8,p<0.001).Conclusions:The proposed nsWHcs imaging approach provided a consistently high image quality and a homogeneous signal intensity distribution within the pulmonary and systemic circulation in pediatric patients and adults with a wide spectrum of congenital heart diseases.nsWHcs enabled detailed anatomical assessment and three-dimensional reconstruction of all cardiac cavities and large thoracic vessels and can be regarded particularly useful for preprocedural planning and interventional guidance in CHD patients.
基金the financial support of this work by the National Natural Science Foundation of Hebei Province China under Grant E2020208052.
文摘With the development of multi-signal monitoring technology,the research on multiple signal analysis and processing has become a hot subject.Mechanical equipment often works under variable working conditions,and the acquired vibration signals are often non-stationary and nonlinear,which are difficult to be processed by traditional analysis methods.In order to solve the noise reduction problem of multiple signals under variable speed,a COT-DCS method combining the Computed Order Tracking(COT)based on Chirplet Path Pursuit(CPP)and Distributed Compressed Sensing(DCS)is proposed.Firstly,the instantaneous frequency(IF)is extracted by CPP,and the speed is obtained by fitting.Then,the speed is used for equal angle sampling of time-domain signals,and angle-domain signals are obtained by COT without a tachometer to eliminate the nonstationarity,and the angledomain signals are compressed and reconstructed by DCS to achieve noise reduction of multiple signals.The accuracy of the CPP method is verified by simulated,experimental signals and compared with some existing IF extraction methods.The COT method also shows good signal stabilization ability through simulation and experiment.Finally,combined with the comparative test of the other two algorithms and four noise reduction effect indicators,the COT-DCS based on the CPP method combines the advantages of the two algorithms and has better noise reduction effect and stability.It is shown that this method is an effective multi-signal noise reduction method.
文摘This study is to compare three-dimensional(3D)isotropic T2-weighted magnetic resonance imaging(MRI)with compressed sensing-sampling perfection with application optimized contrast(CS-SPACE)and the conventional image(3D-SPACE)sequence in terms of image quality,estimated signal-to-noise ratio(SNR),relative contrast-to-noise ratio(CNR),and the lesions’conspicuous of the female pelvis.Thirty-six females(age:51,28-73)with cervical carcinoma(n=20),rectal carcinoma(n=7),or uterine fibroid(n=9)were included.Patients underwent magnetic resonance(MR)imaging at a 3T scanner with the sequences of 3D-SPACE,CS-SPACE,and twodimensional(2D)T2-weighted turbo-spin echo(TSE).Quantitative analyses of estimated SNR and relative CNR between tumors and other tissues,image quality,and tissue conspicuity were performed.Two radiologists assessed the difference in diagnostic findings for carcinoma.Quantitative values and qualitative scores were analyzed,respectively.The estimated SNR and the relative CNR of tumor-to-muscle obturator internus,tumor-to-myometrium,and myometrium-to-muscle obturator internus was comparable between 3D-SPACE and CS-SPACE.The overall image quality and the conspicuity of the lesion scores of the CS-SPACE were higher than that of the 3D-SPACE(P<0.01).The CS-SPACE sequence offers shorter scan time,fewer artifacts,and comparable SNR and CNR to conventional 3D-SPACE,and has the potential to improve the performance of T2-weighted images.
基金support from the Institute of Crustal Dynamics,China Earthquake Administration(Grant No.ZDJ2016-20 and ZDJ2019-15)。
文摘This paper investigates the deformation and fracture propagation of sandstone specimen under uniaxial compression using the distributed fiber optic strain sensing(DFOSS)technology.It shows that the DFOSS-based circumferential strains are in agreement with the data monitored with the traditional strain gage.The DFOSS successfully scans the full-field view of axial and circumferential strains on the specimen surface.The spatiotemporal strain measurement based on DFOSS manifests crack closure and elastoplastic deformation,detects initialization of microcrack nucleation,and identifies strain localization within the specimen.The DFOSS well observes the effects of rock heterogeneity on rock deformation.The advantage of DFOSS-based strain acquisition includes the high spatiotemporal resolution of signals and the ability of full-surface strain scanning.The introduction to the DFOSS technology yields a better understanding of the rock damage process under uniaxial compression.
基金This work was supported by Chinese Postdoctoral Science Foundation (2012M512098), Science and Technology Research Project of Shaanxi Province (2012K13-02-10), the National Science & Technology Pillar Program (2011BAI08B13 and 2012BAI20B02), Military Program (AWS 11 C010-8).
文摘EIT (electrical impedance tomography) problem should be represented by a group of partial differential equation, in numerical calculation: the nonlinear problem should be linearization approximately, and then linear equations set is obtained, so EIT image reconstruct problem should be considered as a classical ill-posed, ill-conditioned, linear inverse problem. Its biggest problem is the number of unknown is much more than the number of the equations, this result in the low imaging quality. Especially, it can not imaging in center area. For this problem, we induce the CS technique into EIT image reconstruction algorithm. The main contributions in this paper are: firstly, built up the relationship between CS and EIT definitely; secondly, sparse reconstruction is a critical step in CS, built up a general sparse regularization model based on EIT; finally, gives out some EIT imaging models based on sparse regularization method. For different scenarios, compared with traditional Tikhonov regularization (smooth regularization) method, sparse reconstruction method is not only better at anti-noise, and imaging in center area, but also faster and better resolution.
基金This work was supported by the National Key R&D Program of China(2019YFC1605500,2018YFF01011700)the National Natural Science Foundation of China(21973111)+1 种基金Guangxi Natural Science Foundation(2017GXNSFAA198029)Scientific Development Fund of Guangxi Academy of Sciences(2018YFJ 403).
文摘To overcome the low efficiency of conventional confocal Raman spectroscopy,many efforts have been devoted to parallelizing the Raman excitation and acquisition,in which the scattering from multiple foci is projected onto different locations on a spectrometer's CCD,along either its vertical,horizontal dimension,or even both.While the latter projection scheme relieves the limitation on the row numbers of the CCD,the spectra of multiple foci are recorded in one spectral channel,resulting in spectral overlapping.Here,we developed a method under a com-pressive sensing framework to demultiplex the superimposed spectra of multiple cells during their dynamic processes.Unlike the previous methods which ignore the information connection be-tween the spectra of the cells recorded at different time,the proposed method utilizes a prior that a cell's spectra acquired at different time have the same sparsity structure in their principal components.Rather than independently demultiplexing the mixed spectra at the individual time intervals,the method demultiplexes the whole spectral sequence acquired continuously during the dynamic process.By penalizing the sparsity combined from all time intervals,the collaborative optimization of the inversion problem gave more accurate recovery results.The performances of the method were substantiated by a 1D Raman tweezers array,which monitored the germination of multiple bacterial spores.The method can be extended to the monitoring of many living cells randomly scattering on a coverslip,and has a potential to improve the throughput by a few orders.
文摘A sparsifying transform for use in Compressed Sensing (CS) is a vital piece of image reconstruction for Magnetic Resonance Imaging (MRI). Previously, Translation Invariant Wavelet Transforms (TIWT) have been shown to perform exceedingly well in CS by reducing repetitive line pattern image artifacts that may be observed when using orthogonal wavelets. To further establish its validity as a good sparsifying transform, the TIWT is comprehensively investigated and compared with Total Variation (TV), using six under-sampling patterns through simulation. Both trajectory and random mask based under-sampling of MRI data are reconstructed to demonstrate a comprehensive coverage of tests. Notably, the TIWT in CS reconstruction performs well for all varieties of under-sampling patterns tested, even for cases where TV does not improve the mean squared error. This improved Image Quality (IQ) gives confidence in applying this transform to more CS applications which will contribute to an even greater speed-up of a CS MRI scan. High vs low resolution time of flight MRI CS re-constructions are also analyzed showing how partial Fourier acquisitions must be carefully addressed in CS to prevent loss of IQ. In the spirit of reproducible research, novel software is introduced here as FastTestCS. It is a helpful tool to quickly develop and perform tests with many CS customizations. Easy integration and testing for the TIWT and TV minimization are exemplified. Simulations of 3D MRI datasets are shown to be efficiently distributed as a scalable solution for large studies. Comparisons in reconstruction computation time are made between the Wavelab toolbox and Gnu Scientific Library in FastTestCS that show a significant time savings factor of 60×. The addition of FastTestCS is proven to be a fast, flexible, portable and reproducible simulation aid for CS research.
基金The National Natural Science Foundation of China(No.11274259)the Open Project Program of the Key Laboratory of Underwater Acoustic Signal Processing of Ministry of Education(No.UASP1305)
文摘The estimation of sparse underwater acoustic channels with a large time delay spread is investigated under the framework of compressed sensing. For these types of channels, the excessively long impulse response will significantly degrade the convergence rate and tracking capability of the traditional estimation algorithms such as least squares (LS), while excluding the use of the delay-Doppler spread function due to huge computational complexity. By constructing a Toeplitz matrix with a training sequence as the measurement matrix, the estimation problem of long sparse acoustic channels is formulated into a compressed sensing problem to facilitate the efficient exploitation of sparsity. Furthermore, unlike the traditional l1 norm or exponent-based approximation l0 norm sparse recovery strategy, a novel variant of approximate l0 norm called AL0 is proposed, minimization of which leads to the derivation of a hybrid approach by iteratively projecting the steepest descent solution to the feasible set. Numerical simulations as well as sea trial experiments are compared and analyzed to demonstrate the superior performance of the proposed algorithm.
基金The National Natural Science Foundation of China (No.60872075)the National High Technology Research and Development Program of China (863 Program) (No.2008AA01Z227)
文摘In order to reduce the pilot number and improve spectral efficiency, recently emerged compressive sensing (CS) is applied to the digital broadcast channel estimation. According to the six channel profiles of the European Telecommunication Standards Institute(ETSI) digital radio mondiale (DRM) standard, the subspace pursuit (SP) algorithm is employed for delay spread and attenuation estimation of each path in the case where the channel profile is identified and the multipath number is known. The stop condition for SP is that the sparsity of the estimation equals the multipath number. For the case where the multipath number is unknown, the orthogonal matching pursuit (OMP) algorithm is employed for channel estimation, while the stop condition is that the estimation achieves the noise variance. Simulation results show that with the same number of pilots, CS algorithms outperform the traditional cubic-spline-interpolation-based least squares (LS) channel estimation. SP is also demonstrated to be better than OMP when the multipath number is known as a priori.