With the advent of the information security era,it is necessary to guarantee the privacy,accuracy,and dependable transfer of pictures.This study presents a new approach to the encryption and compression of color image...With the advent of the information security era,it is necessary to guarantee the privacy,accuracy,and dependable transfer of pictures.This study presents a new approach to the encryption and compression of color images.It is predicated on 2D compressed sensing(CS)and the hyperchaotic system.First,an optimized Arnold scrambling algorithm is applied to the initial color images to ensure strong security.Then,the processed images are con-currently encrypted and compressed using 2D CS.Among them,chaotic sequences replace traditional random measurement matrices to increase the system’s security.Third,the processed images are re-encrypted using a combination of permutation and diffusion algorithms.In addition,the 2D projected gradient with an embedding decryption(2DPG-ED)algorithm is used to reconstruct images.Compared with the traditional reconstruction algorithm,the 2DPG-ED algorithm can improve security and reduce computational complexity.Furthermore,it has better robustness.The experimental outcome and the performance analysis indicate that this algorithm can withstand malicious attacks and prove the method is effective.展开更多
Images are the most important carrier of human information. Moreover, how to safely transmit digital imagesthrough public channels has become an urgent problem. In this paper, we propose a novel image encryptionalgori...Images are the most important carrier of human information. Moreover, how to safely transmit digital imagesthrough public channels has become an urgent problem. In this paper, we propose a novel image encryptionalgorithm, called chaotic compressive sensing (CS) encryption (CCSE), which can not only improve the efficiencyof image transmission but also introduce the high security of the chaotic system. Specifically, the proposed CCSEcan fully leverage the advantages of the Chebyshev chaotic system and CS, enabling it to withstand various attacks,such as differential attacks, and exhibit robustness. First, we use a sparse trans-form to sparse the plaintext imageand then use theArnold transformto perturb the image pixels. After that,we elaborate aChebyshev Toeplitz chaoticsensing matrix for CCSE. By using this Toeplitz matrix, the perturbed image is compressed and sampled to reducethe transmission bandwidth and the amount of data. Finally, a bilateral diffusion operator and a chaotic encryptionoperator are used to perturb and expand the image pixels to change the pixel position and value of the compressedimage, and ultimately obtain an encrypted image. Experimental results show that our method can be resistant tovarious attacks, such as the statistical attack and noise attack, and can outperform its current competitors.展开更多
We propose a fast,adaptive multiscale resolution spectral measurement method based on compressed sensing.The method can apply variable measurement resolution over the entire spectral range to reduce the measurement ti...We propose a fast,adaptive multiscale resolution spectral measurement method based on compressed sensing.The method can apply variable measurement resolution over the entire spectral range to reduce the measurement time by over 75%compared to a global high-resolution measurement.Mimicking the characteristics of the human retina system,the resolution distribution follows the principle of gradually decreasing.The system allows the spectral peaks of interest to be captured dynamically or to be specified a priori by a user.The system was tested by measuring single and dual spectral peaks,and the results of spectral peaks are consistent with those of global high-resolution measurements.展开更多
EIT (electrical impedance tomography) problem should be represented by a group of partial differential equation, in numerical calculation: the nonlinear problem should be linearization approximately, and then linea...EIT (electrical impedance tomography) problem should be represented by a group of partial differential equation, in numerical calculation: the nonlinear problem should be linearization approximately, and then linear equations set is obtained, so EIT image reconstruct problem should be considered as a classical ill-posed, ill-conditioned, linear inverse problem. Its biggest problem is the number of unknown is much more than the number of the equations, this result in the low imaging quality. Especially, it can not imaging in center area. For this problem, we induce the CS technique into EIT image reconstruction algorithm. The main contributions in this paper are: firstly, built up the relationship between CS and EIT definitely; secondly, sparse reconstruction is a critical step in CS, built up a general sparse regularization model based on EIT; finally, gives out some EIT imaging models based on sparse regularization method. For different scenarios, compared with traditional Tikhonov regularization (smooth regularization) method, sparse reconstruction method is not only better at anti-noise, and imaging in center area, but also faster and better resolution.展开更多
The estimation of sparse underwater acoustic channels with a large time delay spread is investigated under the framework of compressed sensing. For these types of channels, the excessively long impulse response will s...The estimation of sparse underwater acoustic channels with a large time delay spread is investigated under the framework of compressed sensing. For these types of channels, the excessively long impulse response will significantly degrade the convergence rate and tracking capability of the traditional estimation algorithms such as least squares (LS), while excluding the use of the delay-Doppler spread function due to huge computational complexity. By constructing a Toeplitz matrix with a training sequence as the measurement matrix, the estimation problem of long sparse acoustic channels is formulated into a compressed sensing problem to facilitate the efficient exploitation of sparsity. Furthermore, unlike the traditional l1 norm or exponent-based approximation l0 norm sparse recovery strategy, a novel variant of approximate l0 norm called AL0 is proposed, minimization of which leads to the derivation of a hybrid approach by iteratively projecting the steepest descent solution to the feasible set. Numerical simulations as well as sea trial experiments are compared and analyzed to demonstrate the superior performance of the proposed algorithm.展开更多
An imaging algorithm based on compressed sensing(CS) for the multi-ship motion target is presented. In order to reduce the quantity of data transmission in searching the ships on a large sea area, both range and azi...An imaging algorithm based on compressed sensing(CS) for the multi-ship motion target is presented. In order to reduce the quantity of data transmission in searching the ships on a large sea area, both range and azimuth of the moving ship targets are converted into sparse representation under certain signal basis. The signal reconstruction algorithm based on CS at a distant calculation station, and the Keystone and fractional Fourier transform(FRFT) algorithm are used to compensate range migration and obtain Doppler frequency. When the sea ships satisfy the sparsity, the algorithm can obtain higher resolution in both range and azimuth than the conventional imaging algorithm. Some simulations are performed to verify the reliability and stability.展开更多
In the process of image transmission, the famous JPEG and JPEG-2000 compression methods need more transmission time as it is difficult for them to compress the image with a low compression rate. Recently the compresse...In the process of image transmission, the famous JPEG and JPEG-2000 compression methods need more transmission time as it is difficult for them to compress the image with a low compression rate. Recently the compressed sensing(CS) theory was proposed, which has earned great concern as it can compress an image with a low compression rate, meanwhile the original image can be perfectly reconstructed from only a few compressed data. The CS theory is used to transmit the high resolution astronomical image and build the simulation environment where there is communication between the satellite and the Earth. Number experimental results show that the CS theory can effectively reduce the image transmission and reconstruction time. Even with a very low compression rate, it still can recover a higher quality astronomical image than JPEG and JPEG-2000 compression methods.展开更多
A sparsifying transform for use in Compressed Sensing (CS) is a vital piece of image reconstruction for Magnetic Resonance Imaging (MRI). Previously, Translation Invariant Wavelet Transforms (TIWT) have been shown to ...A sparsifying transform for use in Compressed Sensing (CS) is a vital piece of image reconstruction for Magnetic Resonance Imaging (MRI). Previously, Translation Invariant Wavelet Transforms (TIWT) have been shown to perform exceedingly well in CS by reducing repetitive line pattern image artifacts that may be observed when using orthogonal wavelets. To further establish its validity as a good sparsifying transform, the TIWT is comprehensively investigated and compared with Total Variation (TV), using six under-sampling patterns through simulation. Both trajectory and random mask based under-sampling of MRI data are reconstructed to demonstrate a comprehensive coverage of tests. Notably, the TIWT in CS reconstruction performs well for all varieties of under-sampling patterns tested, even for cases where TV does not improve the mean squared error. This improved Image Quality (IQ) gives confidence in applying this transform to more CS applications which will contribute to an even greater speed-up of a CS MRI scan. High vs low resolution time of flight MRI CS re-constructions are also analyzed showing how partial Fourier acquisitions must be carefully addressed in CS to prevent loss of IQ. In the spirit of reproducible research, novel software is introduced here as FastTestCS. It is a helpful tool to quickly develop and perform tests with many CS customizations. Easy integration and testing for the TIWT and TV minimization are exemplified. Simulations of 3D MRI datasets are shown to be efficiently distributed as a scalable solution for large studies. Comparisons in reconstruction computation time are made between the Wavelab toolbox and Gnu Scientific Library in FastTestCS that show a significant time savings factor of 60×. The addition of FastTestCS is proven to be a fast, flexible, portable and reproducible simulation aid for CS research.展开更多
To improve spectral X-ray CT reconstructed image quality, the energy-weighted reconstructed image xbins^W and the separable paraboloidal surrogates(SPS) algorithm are proposed for the prior image constrained compres...To improve spectral X-ray CT reconstructed image quality, the energy-weighted reconstructed image xbins^W and the separable paraboloidal surrogates(SPS) algorithm are proposed for the prior image constrained compressed sensing(PICCS)-based spectral X-ray CT image reconstruction. The PICCS-based image reconstruction takes advantage of the compressed sensing theory, a prior image and an optimization algorithm to improve the image quality of CT reconstructions.To evaluate the performance of the proposed method, three optimization algorithms and three prior images are employed and compared in terms of reconstruction accuracy and noise characteristics of the reconstructed images in each energy bin.The experimental simulation results show that the image xbins^W is the best as the prior image in general with respect to the three optimization algorithms; and the SPS algorithm offers the best performance for the simulated phantom with respect to the three prior images. Compared with filtered back-projection(FBP), the PICCS via the SPS algorithm and xbins^W as the prior image can offer the noise reduction in the reconstructed images up to 80. 46%, 82. 51%, 88. 08% in each energy bin,respectively. M eanwhile, the root-mean-squared error in each energy bin is decreased by 15. 02%, 18. 15%, 34. 11% and the correlation coefficient is increased by 9. 98%, 11. 38%,15. 94%, respectively.展开更多
A novel image encryption scheme based on parallel compressive sensing and edge detection embedding technology is proposed to improve visual security. Firstly, the plain image is sparsely represented using the discrete...A novel image encryption scheme based on parallel compressive sensing and edge detection embedding technology is proposed to improve visual security. Firstly, the plain image is sparsely represented using the discrete wavelet transform.Then, the coefficient matrix is scrambled and compressed to obtain a size-reduced image using the Fisher–Yates shuffle and parallel compressive sensing. Subsequently, to increase the security of the proposed algorithm, the compressed image is re-encrypted through permutation and diffusion to obtain a noise-like secret image. Finally, an adaptive embedding method based on edge detection for different carrier images is proposed to generate a visually meaningful cipher image. To improve the plaintext sensitivity of the algorithm, the counter mode is combined with the hash function to generate keys for chaotic systems. Additionally, an effective permutation method is designed to scramble the pixels of the compressed image in the re-encryption stage. The simulation results and analyses demonstrate that the proposed algorithm performs well in terms of visual security and decryption quality.展开更多
The theory of compressed sensing (CS) provides a new chance to reduce the data acquisition time and improve the data usage factor of the stepped frequency radar system. In light of the sparsity of radar target refle...The theory of compressed sensing (CS) provides a new chance to reduce the data acquisition time and improve the data usage factor of the stepped frequency radar system. In light of the sparsity of radar target reflectivity, two imaging methods based on CS, termed the CS-based 2D joint imaging algorithm and the CS-based 2D decoupled imaging algorithm, are proposed. These methods incorporate the coherent mixing operation into the sparse dictionary, and take random measurements in both range and azimuth directions to get high resolution radar images, thus can remarkably reduce the data rate and simplify the hardware design of the radar system while maintaining imaging quality. Ex- periments from both simulated data and measured data in the anechoic chamber show that the proposed imaging methods can get more focused images than the traditional fast Fourier trans- form method. Wherein the joint algorithm has stronger robustness and can provide clearer inverse synthetic aperture radar images, while the decoupled algorithm is computationally more efficient but has slightly degraded imaging quality, which can be improved by increasing measurements or using a robuster recovery algorithm nevertheless.展开更多
A new method for reconstructing the compressed sensing color image by solving an optimization problem based on total variation in the quaternion field is proposed, which can effectively improve the reconstructing abil...A new method for reconstructing the compressed sensing color image by solving an optimization problem based on total variation in the quaternion field is proposed, which can effectively improve the reconstructing ability of the color image. First, the color image is converted from RGB (red, green, blue) space to CMYK (cyan, magenta, yellow, black) space, which is assigned to a quaternion matrix. Meanwhile, the quaternion matrix is converted into the information of the phase and amplitude by the Euler form of the quatemion. Secondly, the phase and amplitude of the quatemion matrix are used as the smoothness constraints for the compressed sensing (CS) problem to make the reconstructing results more accurate. Finally, an iterative method based on gradient is used to solve the CS problem. Experimental results show that by considering the information of the phase and amplitude, the proposed method can achieve better performance than the existing method that treats the three components of the color image as independent parts.展开更多
As the amount of data produced by ground penetrating radar (GPR) for roots is large, the transmission and the storage of data consumes great resources. To alleviate this problem, we propose here a root imaging algor...As the amount of data produced by ground penetrating radar (GPR) for roots is large, the transmission and the storage of data consumes great resources. To alleviate this problem, we propose here a root imaging algorithm using chaotic particle swarm optimal (CPSO) compressed sensing based on GPR data according to the sparsity of root space. Radar data are decomposed, observed, measured and represented in sparse manner, so roots image can be reconstructed with limited data. Firstly, radar signal measurement and sparse representation are implemented, and the solution space is established by wavelet basis and Gauss random matrix; secondly, the matching function is considered as the fitness function, and the best fitness value is found by a PSO algorithm; then, a chaotic search was used to obtain the global optimal operator; finally, the root image is reconstructed by the optimal operators. A-scan data, B-scan data, and complex data from American GSSI GPR is used, respectively, in the experimental test. For B-scan data, the computation time was reduced 60 % and PSNR was improved 5.539 dB; for actual root data imaging, the reconstruction PSNR was 26.300 dB, and total computation time was only 67.210 s. The CPSO-OMP algorithm overcomes the problem of local optimum trapping and comprehensively enhances the precision during reconstruction.展开更多
By applying smoothed l0norm(SL0)algorithm,a block compressive sensing(BCS)algorithm called BCS-SL0 is proposed,which deploys SL0 and smoothing filter for image reconstruction.Furthermore,BCS-ReSL0 algorithm is dev...By applying smoothed l0norm(SL0)algorithm,a block compressive sensing(BCS)algorithm called BCS-SL0 is proposed,which deploys SL0 and smoothing filter for image reconstruction.Furthermore,BCS-ReSL0 algorithm is developed to use regularized SL0(ReSL0)in a reconstruction process to deal with noisy situations.The study shows that the proposed BCS-SL0 takes less execution time than the classical BCS with smoothed projected Landweber(BCS-SPL)algorithm in low measurement ratio,while achieving comparable reconstruction quality,and improving the blocking artifacts especially.The experiment results also verify that the reconstruction performance of BCS-ReSL0 is better than that of the BCSSPL in terms of noise tolerance at low measurement ratio.展开更多
Compressed Sensing (CS) is an emerging technology in the field of signal processing, which can recover a sparse signal by taking very few samples and solving a linear programming problem. In this paper, we study the a...Compressed Sensing (CS) is an emerging technology in the field of signal processing, which can recover a sparse signal by taking very few samples and solving a linear programming problem. In this paper, we study the application of Low-Density Parity-Check (LDPC) Codes in CS. Firstly, we find a sufficient condition for a binary matrix to satisfy the Restricted Isometric Property (RIP). Then, by employing the LDPC codes based on Berlekamp-Justesen (B-J) codes, we construct two classes of binary structured matrices and show that these matrices satisfy RIP. Thus, the proposed matrices could be used as sensing matrices for CS. Finally, simulation results show that the performance of the proposed matrices can be comparable with the widely used random sensing matrices.展开更多
A compressed sensing (CS) based channel estimation algorithm is proposed in the fast moving environment. A sparse basis expansion channel model in both time and frequency domain is given.Pilots are placed according ...A compressed sensing (CS) based channel estimation algorithm is proposed in the fast moving environment. A sparse basis expansion channel model in both time and frequency domain is given.Pilots are placed according to a novel random unit pilot matrix (RUPM) to measure the delay- Doppler sparse channel. The sparse channels are recovered by an extension group orthogonal matching pursuit (GOMP) algorithm, enjoying the diversity gain from multi-symbol processing. The relatively nonzero channel coefficients are estimated from a very limited number of pilots at a sampling rate significantly below the Nyquist rate. The simulation results show that the new channel estimator can provide a considerable performance improvement for the fast fading channels. Three significant reductions are achieved in the required number of pilots, memory requirements and computational complexity.展开更多
High resolution range imaging with correlation processing suffers from high sidelobe pedestal in random frequency-hopping wideband radar. After the factors which affect the sidelobe pedestal being analyzed, a compress...High resolution range imaging with correlation processing suffers from high sidelobe pedestal in random frequency-hopping wideband radar. After the factors which affect the sidelobe pedestal being analyzed, a compressed sensing based algorithm for high resolution range imaging and a new minimized ll-norm criterion for motion compensation are proposed. The random hopping of the transmitted carrier frequency is converted to restricted isometry property of the observing matrix. Then practical problems of imaging model solution and signal parameter design are resolved. Due to the particularity of the proposed algorithm, two new indicators of range profile, i.e., average signal to sidelobe ratio and local similarity, are defined. The chamber measured data are adopted to testify the validity of the proposed algorithm, and simulations are performed to analyze the precision of velocity measurement as well as the performance of motion compensation. The simulation results show that the proposed algorithm has such advantages as high precision velocity measurement, low sidelobe and short period imaging, which ensure robust imaging for moving targets when signal-to-noise ratio is above 10 dB.展开更多
A compressed sensing(CS) based channel estimation algorithm is proposed by using the delay-Doppler sparsity of the fast fading channel.A compressive basis expansion channel model with sparsity in both time and frequ...A compressed sensing(CS) based channel estimation algorithm is proposed by using the delay-Doppler sparsity of the fast fading channel.A compressive basis expansion channel model with sparsity in both time and frequency domains is given.The pilots in accordance with a novel random pilot matrix in both time and frequency domains are sent to measure the delay-Doppler sparsity channel.The relatively nonzero channel coefficients are tracked by random pilots at a sampling rate significantly below the Nyquist rate.The sparsity channels are estimated from a very limited number of channel measurements by the basis pursuit algorithm.The proposed algorithm can effectively improve the channel estimation performance when the number of pilot symbols is reduced with improvement of throughput efficiency.展开更多
Wireless Sensor Networks(WSN) are mainly characterized by a potentially large number of distributed sensor nodes which collectively transmit information about sensed events to the sink.In this paper,we present a Distr...Wireless Sensor Networks(WSN) are mainly characterized by a potentially large number of distributed sensor nodes which collectively transmit information about sensed events to the sink.In this paper,we present a Distributed Wavelet Basis Generation(DWBG) algorithm performing at the sink to obtain the distributed wavelet basis in WSN.And on this basis,a Wavelet Transform-based Distributed Compressed Sensing(WTDCS) algorithm is proposed to compress and reconstruct the sensed data with spatial correlation.Finally,we make a detailed analysis of relationship between reconstruction performance and WTDCS algorithm parameters such as the compression ratio,the channel Signal-to-Noise Ratio(SNR),the observation noise power and the correlation decay parameter by simulation.The simulation results show that WTDCS can achieve high performance in terms of energy and reconstruction accuracy,as compared to the conventional distributed wavelet transform algorithm.展开更多
基金This work was supported in part by the National Natural Science Foundation of China under Grants 71571091,71771112the State Key Laboratory of Synthetical Automation for Process Industries Fundamental Research Funds under Grant PAL-N201801the Excellent Talent Training Project of University of Science and Technology Liaoning under Grant 2019RC05.
文摘With the advent of the information security era,it is necessary to guarantee the privacy,accuracy,and dependable transfer of pictures.This study presents a new approach to the encryption and compression of color images.It is predicated on 2D compressed sensing(CS)and the hyperchaotic system.First,an optimized Arnold scrambling algorithm is applied to the initial color images to ensure strong security.Then,the processed images are con-currently encrypted and compressed using 2D CS.Among them,chaotic sequences replace traditional random measurement matrices to increase the system’s security.Third,the processed images are re-encrypted using a combination of permutation and diffusion algorithms.In addition,the 2D projected gradient with an embedding decryption(2DPG-ED)algorithm is used to reconstruct images.Compared with the traditional reconstruction algorithm,the 2DPG-ED algorithm can improve security and reduce computational complexity.Furthermore,it has better robustness.The experimental outcome and the performance analysis indicate that this algorithm can withstand malicious attacks and prove the method is effective.
基金the National Natural Science Foundation of China(Nos.62002028,62102040 and 62202066).
文摘Images are the most important carrier of human information. Moreover, how to safely transmit digital imagesthrough public channels has become an urgent problem. In this paper, we propose a novel image encryptionalgorithm, called chaotic compressive sensing (CS) encryption (CCSE), which can not only improve the efficiencyof image transmission but also introduce the high security of the chaotic system. Specifically, the proposed CCSEcan fully leverage the advantages of the Chebyshev chaotic system and CS, enabling it to withstand various attacks,such as differential attacks, and exhibit robustness. First, we use a sparse trans-form to sparse the plaintext imageand then use theArnold transformto perturb the image pixels. After that,we elaborate aChebyshev Toeplitz chaoticsensing matrix for CCSE. By using this Toeplitz matrix, the perturbed image is compressed and sampled to reducethe transmission bandwidth and the amount of data. Finally, a bilateral diffusion operator and a chaotic encryptionoperator are used to perturb and expand the image pixels to change the pixel position and value of the compressedimage, and ultimately obtain an encrypted image. Experimental results show that our method can be resistant tovarious attacks, such as the statistical attack and noise attack, and can outperform its current competitors.
基金Project supported by the Natural Science Foundation of Shandong Province,China(Grant Nos.ZR2020MF119 and ZR2020MA082)the National Natural Science Foundation of China(Grant No.62002208)the National Key Research and Development Program of China(Grant No.2018YFB0504302).
文摘We propose a fast,adaptive multiscale resolution spectral measurement method based on compressed sensing.The method can apply variable measurement resolution over the entire spectral range to reduce the measurement time by over 75%compared to a global high-resolution measurement.Mimicking the characteristics of the human retina system,the resolution distribution follows the principle of gradually decreasing.The system allows the spectral peaks of interest to be captured dynamically or to be specified a priori by a user.The system was tested by measuring single and dual spectral peaks,and the results of spectral peaks are consistent with those of global high-resolution measurements.
基金This work was supported by Chinese Postdoctoral Science Foundation (2012M512098), Science and Technology Research Project of Shaanxi Province (2012K13-02-10), the National Science & Technology Pillar Program (2011BAI08B13 and 2012BAI20B02), Military Program (AWS 11 C010-8).
文摘EIT (electrical impedance tomography) problem should be represented by a group of partial differential equation, in numerical calculation: the nonlinear problem should be linearization approximately, and then linear equations set is obtained, so EIT image reconstruct problem should be considered as a classical ill-posed, ill-conditioned, linear inverse problem. Its biggest problem is the number of unknown is much more than the number of the equations, this result in the low imaging quality. Especially, it can not imaging in center area. For this problem, we induce the CS technique into EIT image reconstruction algorithm. The main contributions in this paper are: firstly, built up the relationship between CS and EIT definitely; secondly, sparse reconstruction is a critical step in CS, built up a general sparse regularization model based on EIT; finally, gives out some EIT imaging models based on sparse regularization method. For different scenarios, compared with traditional Tikhonov regularization (smooth regularization) method, sparse reconstruction method is not only better at anti-noise, and imaging in center area, but also faster and better resolution.
基金The National Natural Science Foundation of China(No.11274259)the Open Project Program of the Key Laboratory of Underwater Acoustic Signal Processing of Ministry of Education(No.UASP1305)
文摘The estimation of sparse underwater acoustic channels with a large time delay spread is investigated under the framework of compressed sensing. For these types of channels, the excessively long impulse response will significantly degrade the convergence rate and tracking capability of the traditional estimation algorithms such as least squares (LS), while excluding the use of the delay-Doppler spread function due to huge computational complexity. By constructing a Toeplitz matrix with a training sequence as the measurement matrix, the estimation problem of long sparse acoustic channels is formulated into a compressed sensing problem to facilitate the efficient exploitation of sparsity. Furthermore, unlike the traditional l1 norm or exponent-based approximation l0 norm sparse recovery strategy, a novel variant of approximate l0 norm called AL0 is proposed, minimization of which leads to the derivation of a hybrid approach by iteratively projecting the steepest descent solution to the feasible set. Numerical simulations as well as sea trial experiments are compared and analyzed to demonstrate the superior performance of the proposed algorithm.
基金supported by the National Natural Science Foundation of China(61271342)
文摘An imaging algorithm based on compressed sensing(CS) for the multi-ship motion target is presented. In order to reduce the quantity of data transmission in searching the ships on a large sea area, both range and azimuth of the moving ship targets are converted into sparse representation under certain signal basis. The signal reconstruction algorithm based on CS at a distant calculation station, and the Keystone and fractional Fourier transform(FRFT) algorithm are used to compensate range migration and obtain Doppler frequency. When the sea ships satisfy the sparsity, the algorithm can obtain higher resolution in both range and azimuth than the conventional imaging algorithm. Some simulations are performed to verify the reliability and stability.
文摘In the process of image transmission, the famous JPEG and JPEG-2000 compression methods need more transmission time as it is difficult for them to compress the image with a low compression rate. Recently the compressed sensing(CS) theory was proposed, which has earned great concern as it can compress an image with a low compression rate, meanwhile the original image can be perfectly reconstructed from only a few compressed data. The CS theory is used to transmit the high resolution astronomical image and build the simulation environment where there is communication between the satellite and the Earth. Number experimental results show that the CS theory can effectively reduce the image transmission and reconstruction time. Even with a very low compression rate, it still can recover a higher quality astronomical image than JPEG and JPEG-2000 compression methods.
文摘A sparsifying transform for use in Compressed Sensing (CS) is a vital piece of image reconstruction for Magnetic Resonance Imaging (MRI). Previously, Translation Invariant Wavelet Transforms (TIWT) have been shown to perform exceedingly well in CS by reducing repetitive line pattern image artifacts that may be observed when using orthogonal wavelets. To further establish its validity as a good sparsifying transform, the TIWT is comprehensively investigated and compared with Total Variation (TV), using six under-sampling patterns through simulation. Both trajectory and random mask based under-sampling of MRI data are reconstructed to demonstrate a comprehensive coverage of tests. Notably, the TIWT in CS reconstruction performs well for all varieties of under-sampling patterns tested, even for cases where TV does not improve the mean squared error. This improved Image Quality (IQ) gives confidence in applying this transform to more CS applications which will contribute to an even greater speed-up of a CS MRI scan. High vs low resolution time of flight MRI CS re-constructions are also analyzed showing how partial Fourier acquisitions must be carefully addressed in CS to prevent loss of IQ. In the spirit of reproducible research, novel software is introduced here as FastTestCS. It is a helpful tool to quickly develop and perform tests with many CS customizations. Easy integration and testing for the TIWT and TV minimization are exemplified. Simulations of 3D MRI datasets are shown to be efficiently distributed as a scalable solution for large studies. Comparisons in reconstruction computation time are made between the Wavelab toolbox and Gnu Scientific Library in FastTestCS that show a significant time savings factor of 60×. The addition of FastTestCS is proven to be a fast, flexible, portable and reproducible simulation aid for CS research.
基金The National Natural Science Foundation of China(No.51575256)the Fundamental Research Funds for the Central Universities(No.NP2015101,XZA16003)the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)
文摘To improve spectral X-ray CT reconstructed image quality, the energy-weighted reconstructed image xbins^W and the separable paraboloidal surrogates(SPS) algorithm are proposed for the prior image constrained compressed sensing(PICCS)-based spectral X-ray CT image reconstruction. The PICCS-based image reconstruction takes advantage of the compressed sensing theory, a prior image and an optimization algorithm to improve the image quality of CT reconstructions.To evaluate the performance of the proposed method, three optimization algorithms and three prior images are employed and compared in terms of reconstruction accuracy and noise characteristics of the reconstructed images in each energy bin.The experimental simulation results show that the image xbins^W is the best as the prior image in general with respect to the three optimization algorithms; and the SPS algorithm offers the best performance for the simulated phantom with respect to the three prior images. Compared with filtered back-projection(FBP), the PICCS via the SPS algorithm and xbins^W as the prior image can offer the noise reduction in the reconstructed images up to 80. 46%, 82. 51%, 88. 08% in each energy bin,respectively. M eanwhile, the root-mean-squared error in each energy bin is decreased by 15. 02%, 18. 15%, 34. 11% and the correlation coefficient is increased by 9. 98%, 11. 38%,15. 94%, respectively.
基金supported by the Key Area R&D Program of Guangdong Province (Grant No.2022B0701180001)the National Natural Science Foundation of China (Grant No.61801127)+1 种基金the Science Technology Planning Project of Guangdong Province,China (Grant Nos.2019B010140002 and 2020B111110002)the Guangdong-Hong Kong-Macao Joint Innovation Field Project (Grant No.2021A0505080006)。
文摘A novel image encryption scheme based on parallel compressive sensing and edge detection embedding technology is proposed to improve visual security. Firstly, the plain image is sparsely represented using the discrete wavelet transform.Then, the coefficient matrix is scrambled and compressed to obtain a size-reduced image using the Fisher–Yates shuffle and parallel compressive sensing. Subsequently, to increase the security of the proposed algorithm, the compressed image is re-encrypted through permutation and diffusion to obtain a noise-like secret image. Finally, an adaptive embedding method based on edge detection for different carrier images is proposed to generate a visually meaningful cipher image. To improve the plaintext sensitivity of the algorithm, the counter mode is combined with the hash function to generate keys for chaotic systems. Additionally, an effective permutation method is designed to scramble the pixels of the compressed image in the re-encryption stage. The simulation results and analyses demonstrate that the proposed algorithm performs well in terms of visual security and decryption quality.
基金supported by the Prominent Youth Fund of the National Natural Science Foundation of China (61025006)
文摘The theory of compressed sensing (CS) provides a new chance to reduce the data acquisition time and improve the data usage factor of the stepped frequency radar system. In light of the sparsity of radar target reflectivity, two imaging methods based on CS, termed the CS-based 2D joint imaging algorithm and the CS-based 2D decoupled imaging algorithm, are proposed. These methods incorporate the coherent mixing operation into the sparse dictionary, and take random measurements in both range and azimuth directions to get high resolution radar images, thus can remarkably reduce the data rate and simplify the hardware design of the radar system while maintaining imaging quality. Ex- periments from both simulated data and measured data in the anechoic chamber show that the proposed imaging methods can get more focused images than the traditional fast Fourier trans- form method. Wherein the joint algorithm has stronger robustness and can provide clearer inverse synthetic aperture radar images, while the decoupled algorithm is computationally more efficient but has slightly degraded imaging quality, which can be improved by increasing measurements or using a robuster recovery algorithm nevertheless.
基金The National Basic Research Program of China(973Program)(No.2011CB707904)the National Natural Science Foundation of China(No.61201344,61271312,61073138)+1 种基金the Specialized Research Fund for the Doctoral Program of Higher Education(No.20110092110023,20120092120036)the Natural Science Foundation of Jiangsu Province(No.BK2012329)
文摘A new method for reconstructing the compressed sensing color image by solving an optimization problem based on total variation in the quaternion field is proposed, which can effectively improve the reconstructing ability of the color image. First, the color image is converted from RGB (red, green, blue) space to CMYK (cyan, magenta, yellow, black) space, which is assigned to a quaternion matrix. Meanwhile, the quaternion matrix is converted into the information of the phase and amplitude by the Euler form of the quatemion. Secondly, the phase and amplitude of the quatemion matrix are used as the smoothness constraints for the compressed sensing (CS) problem to make the reconstructing results more accurate. Finally, an iterative method based on gradient is used to solve the CS problem. Experimental results show that by considering the information of the phase and amplitude, the proposed method can achieve better performance than the existing method that treats the three components of the color image as independent parts.
基金supported by the Fundamental Research Funds for the Central Universities(DL13BB21)the Natural Science Foundation of Heilongjiang Province(C2015054)+1 种基金Heilongjiang Province Technology Foundation for Selected Osverseas ChineseNatural Science Foundation of Heilongjiang Province(F2015036)
文摘As the amount of data produced by ground penetrating radar (GPR) for roots is large, the transmission and the storage of data consumes great resources. To alleviate this problem, we propose here a root imaging algorithm using chaotic particle swarm optimal (CPSO) compressed sensing based on GPR data according to the sparsity of root space. Radar data are decomposed, observed, measured and represented in sparse manner, so roots image can be reconstructed with limited data. Firstly, radar signal measurement and sparse representation are implemented, and the solution space is established by wavelet basis and Gauss random matrix; secondly, the matching function is considered as the fitness function, and the best fitness value is found by a PSO algorithm; then, a chaotic search was used to obtain the global optimal operator; finally, the root image is reconstructed by the optimal operators. A-scan data, B-scan data, and complex data from American GSSI GPR is used, respectively, in the experimental test. For B-scan data, the computation time was reduced 60 % and PSNR was improved 5.539 dB; for actual root data imaging, the reconstruction PSNR was 26.300 dB, and total computation time was only 67.210 s. The CPSO-OMP algorithm overcomes the problem of local optimum trapping and comprehensively enhances the precision during reconstruction.
基金Supported by the National Natural Science Foundation of China(61421001,61331021,61501029)
文摘By applying smoothed l0norm(SL0)algorithm,a block compressive sensing(BCS)algorithm called BCS-SL0 is proposed,which deploys SL0 and smoothing filter for image reconstruction.Furthermore,BCS-ReSL0 algorithm is developed to use regularized SL0(ReSL0)in a reconstruction process to deal with noisy situations.The study shows that the proposed BCS-SL0 takes less execution time than the classical BCS with smoothed projected Landweber(BCS-SPL)algorithm in low measurement ratio,while achieving comparable reconstruction quality,and improving the blocking artifacts especially.The experiment results also verify that the reconstruction performance of BCS-ReSL0 is better than that of the BCSSPL in terms of noise tolerance at low measurement ratio.
基金Supported by the NSFC project (No. 60972011)the Research Fund for the Doctoral Program of Higher Education of China (No. 20100002110033)the open research fund of National Mobile Communications Research Laboratory of Southeast University (No. 2011D11)
文摘Compressed Sensing (CS) is an emerging technology in the field of signal processing, which can recover a sparse signal by taking very few samples and solving a linear programming problem. In this paper, we study the application of Low-Density Parity-Check (LDPC) Codes in CS. Firstly, we find a sufficient condition for a binary matrix to satisfy the Restricted Isometric Property (RIP). Then, by employing the LDPC codes based on Berlekamp-Justesen (B-J) codes, we construct two classes of binary structured matrices and show that these matrices satisfy RIP. Thus, the proposed matrices could be used as sensing matrices for CS. Finally, simulation results show that the performance of the proposed matrices can be comparable with the widely used random sensing matrices.
基金Supported by the National Natural Science Foundation of China ( No. 60972056 ), the Innovation Foundation of Shanghai Education Committee ( No. 09ZZ89) and Shanghai Leading Academic Discipline Project and STCSM ( No.S30108, 08DZ2231100 ).
文摘A compressed sensing (CS) based channel estimation algorithm is proposed in the fast moving environment. A sparse basis expansion channel model in both time and frequency domain is given.Pilots are placed according to a novel random unit pilot matrix (RUPM) to measure the delay- Doppler sparse channel. The sparse channels are recovered by an extension group orthogonal matching pursuit (GOMP) algorithm, enjoying the diversity gain from multi-symbol processing. The relatively nonzero channel coefficients are estimated from a very limited number of pilots at a sampling rate significantly below the Nyquist rate. The simulation results show that the new channel estimator can provide a considerable performance improvement for the fast fading channels. Three significant reductions are achieved in the required number of pilots, memory requirements and computational complexity.
基金Project(61171133) supported by the National Natural Science Foundation of ChinaProject(CX2011B019) supported by Hunan Provincial Innovation Foundation for Postgraduate,ChinaProject(B110404) supported by Innovation Foundation for Outstanding Postgraduates of National University of Defense Technology,China
文摘High resolution range imaging with correlation processing suffers from high sidelobe pedestal in random frequency-hopping wideband radar. After the factors which affect the sidelobe pedestal being analyzed, a compressed sensing based algorithm for high resolution range imaging and a new minimized ll-norm criterion for motion compensation are proposed. The random hopping of the transmitted carrier frequency is converted to restricted isometry property of the observing matrix. Then practical problems of imaging model solution and signal parameter design are resolved. Due to the particularity of the proposed algorithm, two new indicators of range profile, i.e., average signal to sidelobe ratio and local similarity, are defined. The chamber measured data are adopted to testify the validity of the proposed algorithm, and simulations are performed to analyze the precision of velocity measurement as well as the performance of motion compensation. The simulation results show that the proposed algorithm has such advantages as high precision velocity measurement, low sidelobe and short period imaging, which ensure robust imaging for moving targets when signal-to-noise ratio is above 10 dB.
基金supported by the National Natural Science Foundation of China(60972056)the Innovation Foundation of Shanghai Education Committee(09ZZ89)Shanghai Leading Academic Discipline Project and STCSM(S30108and08DZ2231100)
文摘A compressed sensing(CS) based channel estimation algorithm is proposed by using the delay-Doppler sparsity of the fast fading channel.A compressive basis expansion channel model with sparsity in both time and frequency domains is given.The pilots in accordance with a novel random pilot matrix in both time and frequency domains are sent to measure the delay-Doppler sparsity channel.The relatively nonzero channel coefficients are tracked by random pilots at a sampling rate significantly below the Nyquist rate.The sparsity channels are estimated from a very limited number of channel measurements by the basis pursuit algorithm.The proposed algorithm can effectively improve the channel estimation performance when the number of pilot symbols is reduced with improvement of throughput efficiency.
基金the National Basic Research Program of China,the National Natural Science Foundation of China,the open research fund of National Mobile Communications Research Laboratory,Southeast University,the Postdoctoral Science Foundation of Jiangsu Province,the University Natural Science Research Program of Jiangsu Province,the Basic Research Program of Jiangsu Province (Natural Science Foundation)
文摘Wireless Sensor Networks(WSN) are mainly characterized by a potentially large number of distributed sensor nodes which collectively transmit information about sensed events to the sink.In this paper,we present a Distributed Wavelet Basis Generation(DWBG) algorithm performing at the sink to obtain the distributed wavelet basis in WSN.And on this basis,a Wavelet Transform-based Distributed Compressed Sensing(WTDCS) algorithm is proposed to compress and reconstruct the sensed data with spatial correlation.Finally,we make a detailed analysis of relationship between reconstruction performance and WTDCS algorithm parameters such as the compression ratio,the channel Signal-to-Noise Ratio(SNR),the observation noise power and the correlation decay parameter by simulation.The simulation results show that WTDCS can achieve high performance in terms of energy and reconstruction accuracy,as compared to the conventional distributed wavelet transform algorithm.