We study the global unique solutions to the 2-D inhomogeneous incompressible MHD equations,with the initial data(u0,B0)being located in the critical Besov space■and the initial densityρ0 being close to a positive co...We study the global unique solutions to the 2-D inhomogeneous incompressible MHD equations,with the initial data(u0,B0)being located in the critical Besov space■and the initial densityρ0 being close to a positive constant.By using weighted global estimates,maximal regularity estimates in the Lorentz space for the Stokes system,and the Lagrangian approach,we show that the 2-D MHD equations have a unique global solution.展开更多
In this paper,we study the three-dimensional regularized MHD equations with fractional Laplacians in the dissipative and diffusive terms.We establish the global existence of mild solutions to this system with small in...In this paper,we study the three-dimensional regularized MHD equations with fractional Laplacians in the dissipative and diffusive terms.We establish the global existence of mild solutions to this system with small initial data.In addition,we also obtain the Gevrey class regularity and the temporal decay rate of the solution.展开更多
We consider the singular Riemann problem for the rectilinear isentropic compressible Euler equations with discontinuous flux,more specifically,for pressureless flow on the left and polytropic flow on the right separat...We consider the singular Riemann problem for the rectilinear isentropic compressible Euler equations with discontinuous flux,more specifically,for pressureless flow on the left and polytropic flow on the right separated by a discontinuity x=x(t).We prove that this problem admits global Radon measure solutions for all kinds of initial data.The over-compressing condition on the discontinuity x=x(t)is not enough to ensure the uniqueness of the solution.However,there is a unique piecewise smooth solution if one proposes a slip condition on the right-side of the curve x=x(t)+0,in addition to the full adhesion condition on its left-side.As an application,we study a free piston problem with the piston in a tube surrounded initially by uniform pressureless flow and a polytropic gas.In particular,we obtain the existence of a piecewise smooth solution for the motion of the piston between a vacuum and a polytropic gas.This indicates that the singular Riemann problem looks like a control problem in the sense that one could adjust the condition on the discontinuity of the flux to obtain the desired flow field.展开更多
In this paper,we construct a high-order discontinuous Galerkin(DG)method which can preserve the positivity of the density and the pressure for the viscous and resistive magnetohydrodynamics(VRMHD).To control the diver...In this paper,we construct a high-order discontinuous Galerkin(DG)method which can preserve the positivity of the density and the pressure for the viscous and resistive magnetohydrodynamics(VRMHD).To control the divergence error in the magnetic field,both the local divergence-free basis and the Godunov source term would be employed for the multi-dimensional VRMHD.Rigorous theoretical analyses are presented for one-dimensional and multi-dimensional DG schemes,respectively,showing that the scheme can maintain the positivity-preserving(PP)property under some CFL conditions when combined with the strong-stability-preserving time discretization.Then,general frameworks are established to construct the PP limiter for arbitrary order of accuracy DG schemes.Numerical tests demonstrate the effectiveness of the proposed schemes.展开更多
We solve the Riemann problems for isentropic compressible Euler equations of polytropic gases in the class of Radon measures,and the solutions admit the concentration of mass.It is found that under the requirement of ...We solve the Riemann problems for isentropic compressible Euler equations of polytropic gases in the class of Radon measures,and the solutions admit the concentration of mass.It is found that under the requirement of satisfying the over-compressing entropy condition:(i)there is a unique delta shock solution,corresponding to the case that has two strong classical Lax shocks;(ii)for the initial data that the classical Riemann solution contains a shock wave and a rarefaction wave,or two shocks with one being weak,there are infinitely many solutions,each consists of a delta shock and a rarefaction wave;(iii)there are no delta shocks for the case that the classical entropy weak solutions consist only of rarefaction waves.These solutions are self-similar.Furthermore,for the generalized Riemann problem with mass concentrated initially at the discontinuous point of initial data,there always exists a unique delta shock for at least a short time.It could be prolonged to a global solution.Not all the solutions are self-similar due to the initial velocity of the concentrated point-mass(particle).Whether the delta shock solutions constructed satisfy the over-compressing entropy condition is clarified.This is the first result on the construction of singular measure solutions to the compressible Euler system of polytropic gases,that is strictly hyperbolic,and whose characteristics are both genuinely nonlinear.We also discuss possible physical interpretations and applications of these new solutions.展开更多
In this paper we prove local well-posedness in critical Besov spaces for the full compressible MHD equations in R^N, N≥ 2, under the assumptions that the initialdensity is bounded away from zero. The proof relies on ...In this paper we prove local well-posedness in critical Besov spaces for the full compressible MHD equations in R^N, N≥ 2, under the assumptions that the initialdensity is bounded away from zero. The proof relies on uniform estimates for a mixed hyperbolic/parabolic linear system with a convection term.展开更多
In this article, we mainly study the local equation of energy for weak solutions of 3D MHD equations. We define a dissipation term D(u, B) that steins from an eventual lack of smoothness in the solution, and then ob...In this article, we mainly study the local equation of energy for weak solutions of 3D MHD equations. We define a dissipation term D(u, B) that steins from an eventual lack of smoothness in the solution, and then obtain a local equation of energy for weak solutions of 3D MHD equations. Finally, we consider the 2D case at the end of this article.展开更多
In this paper,we study the controllability of compressible Navier-Stokes equations with density dependent viscosities.For when the shear viscosityμis a positive constant and the bulk viscosityλis a function of the d...In this paper,we study the controllability of compressible Navier-Stokes equations with density dependent viscosities.For when the shear viscosityμis a positive constant and the bulk viscosityλis a function of the density,it is proven that the system is exactly locally controllable to a constant target trajectory by using boundary control functions.展开更多
In this paper,we consider the weak solutions of compressible Navier-StokesLandau-Lifshitz-Maxwell(CNSLLM)system for quantum fluids with a linear density dependent viscosity in a 3D torus.By introducing the cold pressu...In this paper,we consider the weak solutions of compressible Navier-StokesLandau-Lifshitz-Maxwell(CNSLLM)system for quantum fluids with a linear density dependent viscosity in a 3D torus.By introducing the cold pressure Pc,we prove the global existence of weak solutions with the pressure P+Pc,where P=Aργwithγ≥1.Our main result extends the one in[13]on the quantum Navier-Stokes equations to the CNSLLM system.展开更多
We consider the global well-posedness of strong solutions to the Cauchy problem of compressible barotropic Navier-Stokes equations in R^(2). By exploiting the global-in-time estimate to the two-dimensional(2D for shor...We consider the global well-posedness of strong solutions to the Cauchy problem of compressible barotropic Navier-Stokes equations in R^(2). By exploiting the global-in-time estimate to the two-dimensional(2D for short) classical incompressible Navier-Stokes equations and using techniques developed in(SIAM J Math Anal, 2020, 52(2): 1806–1843), we derive the global existence of solutions provided that the initial data satisfies some smallness condition. In particular, the initial velocity with some arbitrary Besov norm of potential part Pu_0 and large high oscillation are allowed in our results. Moreover, we also construct an example with the initial data involving such a smallness condition, but with a norm that is arbitrarily large.展开更多
We investigate the low Mach number limit for the isentropic compressible NavierStokes equations with a revised Maxwell's law(with Galilean invariance) in R^(3). By applying the uniform estimates of the error syste...We investigate the low Mach number limit for the isentropic compressible NavierStokes equations with a revised Maxwell's law(with Galilean invariance) in R^(3). By applying the uniform estimates of the error system, it is proven that the solutions of the isentropic Navier-Stokes equations with a revised Maxwell's law converge to that of the incompressible Navier-Stokes equations as the Mach number tends to zero. Moreover, the convergence rates are also obtained.展开更多
In this note,we give a new proof to the energy conservation for the weak solutions of the incompressible 3D MHD equations.Moreover,we give the lower bounds for possible singular solutions to the incompressible 3D MHD ...In this note,we give a new proof to the energy conservation for the weak solutions of the incompressible 3D MHD equations.Moreover,we give the lower bounds for possible singular solutions to the incompressible 3D MHD equations.展开更多
This paper mainly studies the blowup phenomenon of solutions to the compressible Euler equations with general time-dependent damping for non-isentropic fluids in two and three space dimensions. When the initial data i...This paper mainly studies the blowup phenomenon of solutions to the compressible Euler equations with general time-dependent damping for non-isentropic fluids in two and three space dimensions. When the initial data is assumed to be radially symmetric and the initial density contains vacuum, we obtain that classical solution, especially the density, will blow up on finite time. The results also reveal that damping can really delay the singularity formation.展开更多
This paper is concerned with the global well-posedness of the solution to the compressible Navier-Stokes/Allen-Cahn system and its sharp interface limit in one-dimensional space.For the perturbations with small energy...This paper is concerned with the global well-posedness of the solution to the compressible Navier-Stokes/Allen-Cahn system and its sharp interface limit in one-dimensional space.For the perturbations with small energy but possibly large oscillations of rarefaction wave solutions near phase separation,and where the strength of the initial phase field could be arbitrarily large,we prove that the solution of the Cauchy problem exists for all time,and converges to the centered rarefaction wave solution of the corresponding standard two-phase Euler equation as the viscosity and the thickness of the interface tend to zero.The proof is mainly based on a scaling argument and a basic energy method.展开更多
We study the incompressible limit of classical solutions to compressible ideal magneto-hydrodynamics in a domain with a flat boundary.The boundary condition is characteristic and the initial data is general.We first e...We study the incompressible limit of classical solutions to compressible ideal magneto-hydrodynamics in a domain with a flat boundary.The boundary condition is characteristic and the initial data is general.We first establish the uniform existence of classical solutions with respect to the Mach number.Then,we prove that the solutions converge to the solution of the incompressible MHD system.In particular,we obtain a stronger convergence result by using the dispersion of acoustic waves in the half space.展开更多
We introduce a factorized Smith method(FSM)for solving large-scale highranked T-Stein equations within the banded-plus-low-rank structure framework.To effectively reduce both computational complexity and storage requi...We introduce a factorized Smith method(FSM)for solving large-scale highranked T-Stein equations within the banded-plus-low-rank structure framework.To effectively reduce both computational complexity and storage requirements,we develop techniques including deflation and shift,partial truncation and compression,as well as redesign the residual computation and termination condition.Numerical examples demonstrate that the FSM outperforms the Smith method implemented with a hierarchical HODLR structured toolkit in terms of CPU time.展开更多
We are concerned with the zero dielectric constant limit for the full electromagneto-fluid dynamics in this article. This singular limit is justified rigorously for global smooth solution for both well-prepared and il...We are concerned with the zero dielectric constant limit for the full electromagneto-fluid dynamics in this article. This singular limit is justified rigorously for global smooth solution for both well-prepared and ill-prepared initial data. The explicit convergence rate is also obtained by a elaborate energy estimate. Moreover, we show that for the wellprepared initial data, there is no initial layer, and the electric field always converges strongly to the limit function. While for the ill-prepared data case, there will be an initial layer near t = 0. The strong convergence results only hold outside the initial layer.展开更多
In this paper, the solutions of three dimensional incompressible magnetohydrodynamics (MHD) equations are obtained by using sin method and Riccati auxiliary equation. This paper obtains the soliton solutions by the ai...In this paper, the solutions of three dimensional incompressible magnetohydrodynamics (MHD) equations are obtained by using sin method and Riccati auxiliary equation. This paper obtains the soliton solutions by the aid of software Mathematica.展开更多
In this paper, we consider the global existence and decay rates of strong solutions to the three-dimensional compressible quantum Hall-magneto-hydrodynamics equations. By combing the Lp-Lq estimates for the linearized...In this paper, we consider the global existence and decay rates of strong solutions to the three-dimensional compressible quantum Hall-magneto-hydrodynamics equations. By combing the Lp-Lq estimates for the linearized equations and a standard energy method, the global existence and its convergence rates are obtained in various norms for the solution to the equilibrium state in the whole space when the initial perturbation of the stationary solution is small in some Sobolev norms. More precisely, the decay rates in time of the solution and its first order derivatives in L2-norm are obtained when the L1-norm of the perturbation is bounded.展开更多
In this paper, we are concerned with the Cauchy problem of the full compressible Hall-magnetohydrodynamic equations in three-dimensional whole space. By the energy method, global existence of a unique strong solution ...In this paper, we are concerned with the Cauchy problem of the full compressible Hall-magnetohydrodynamic equations in three-dimensional whole space. By the energy method, global existence of a unique strong solution is established. If further that the L1-norm of the perturbation is bounded, we prove the decay rates in time of the solution and its first-order derivatives in L2-norm via some Lp-Lq estimates by the linearized operator.展开更多
基金supported by the National Natural Science Foundation of China(12371211,12126359)the postgraduate Scientific Research Innovation Project of Hunan Province(XDCX2022Y054,CX20220541).
文摘We study the global unique solutions to the 2-D inhomogeneous incompressible MHD equations,with the initial data(u0,B0)being located in the critical Besov space■and the initial densityρ0 being close to a positive constant.By using weighted global estimates,maximal regularity estimates in the Lorentz space for the Stokes system,and the Lagrangian approach,we show that the 2-D MHD equations have a unique global solution.
基金supported by the Opening Project of Guangdong Province Key Laboratory of Cyber-Physical System(20168030301008)supported by the National Natural Science Foundation of China(11126266)+4 种基金the Natural Science Foundation of Guangdong Province(2016A030313390)the Quality Engineering Project of Guangdong Province(SCAU-2021-69)the SCAU Fund for High-level University Buildingsupported by the National Key Research and Development Program of China(2020YFA0712500)the National Natural Science Foundation of China(11971496,12126609)。
文摘In this paper,we study the three-dimensional regularized MHD equations with fractional Laplacians in the dissipative and diffusive terms.We establish the global existence of mild solutions to this system with small initial data.In addition,we also obtain the Gevrey class regularity and the temporal decay rate of the solution.
基金supported by the National Natural Science Foundation of China(11871218,12071298)in part by the Science and Technology Commission of Shanghai Municipality(21JC1402500,22DZ2229014)。
文摘We consider the singular Riemann problem for the rectilinear isentropic compressible Euler equations with discontinuous flux,more specifically,for pressureless flow on the left and polytropic flow on the right separated by a discontinuity x=x(t).We prove that this problem admits global Radon measure solutions for all kinds of initial data.The over-compressing condition on the discontinuity x=x(t)is not enough to ensure the uniqueness of the solution.However,there is a unique piecewise smooth solution if one proposes a slip condition on the right-side of the curve x=x(t)+0,in addition to the full adhesion condition on its left-side.As an application,we study a free piston problem with the piston in a tube surrounded initially by uniform pressureless flow and a polytropic gas.In particular,we obtain the existence of a piecewise smooth solution for the motion of the piston between a vacuum and a polytropic gas.This indicates that the singular Riemann problem looks like a control problem in the sense that one could adjust the condition on the discontinuity of the flux to obtain the desired flow field.
基金supported by the NSFC Grant 11901555,12271499the Cyrus Tang Foundationsupported by the NSFC Grant 11871448 and 12126604.
文摘In this paper,we construct a high-order discontinuous Galerkin(DG)method which can preserve the positivity of the density and the pressure for the viscous and resistive magnetohydrodynamics(VRMHD).To control the divergence error in the magnetic field,both the local divergence-free basis and the Godunov source term would be employed for the multi-dimensional VRMHD.Rigorous theoretical analyses are presented for one-dimensional and multi-dimensional DG schemes,respectively,showing that the scheme can maintain the positivity-preserving(PP)property under some CFL conditions when combined with the strong-stability-preserving time discretization.Then,general frameworks are established to construct the PP limiter for arbitrary order of accuracy DG schemes.Numerical tests demonstrate the effectiveness of the proposed schemes.
基金supported by the National Natural Science Foundation of China under Grants No.11871218,No.12071298the Science and Technology Commission of Shanghai Municipality under Grant No.18dz2271000.
文摘We solve the Riemann problems for isentropic compressible Euler equations of polytropic gases in the class of Radon measures,and the solutions admit the concentration of mass.It is found that under the requirement of satisfying the over-compressing entropy condition:(i)there is a unique delta shock solution,corresponding to the case that has two strong classical Lax shocks;(ii)for the initial data that the classical Riemann solution contains a shock wave and a rarefaction wave,or two shocks with one being weak,there are infinitely many solutions,each consists of a delta shock and a rarefaction wave;(iii)there are no delta shocks for the case that the classical entropy weak solutions consist only of rarefaction waves.These solutions are self-similar.Furthermore,for the generalized Riemann problem with mass concentrated initially at the discontinuous point of initial data,there always exists a unique delta shock for at least a short time.It could be prolonged to a global solution.Not all the solutions are self-similar due to the initial velocity of the concentrated point-mass(particle).Whether the delta shock solutions constructed satisfy the over-compressing entropy condition is clarified.This is the first result on the construction of singular measure solutions to the compressible Euler system of polytropic gases,that is strictly hyperbolic,and whose characteristics are both genuinely nonlinear.We also discuss possible physical interpretations and applications of these new solutions.
文摘In this paper we prove local well-posedness in critical Besov spaces for the full compressible MHD equations in R^N, N≥ 2, under the assumptions that the initialdensity is bounded away from zero. The proof relies on uniform estimates for a mixed hyperbolic/parabolic linear system with a convection term.
基金Supported by NSFC (10976026)supported by the Fundamental Research Funds for the Central Universities (11QZR18)the Research Funds for high-level talents of Huaqiao University (12BS232)
文摘In this article, we mainly study the local equation of energy for weak solutions of 3D MHD equations. We define a dissipation term D(u, B) that steins from an eventual lack of smoothness in the solution, and then obtain a local equation of energy for weak solutions of 3D MHD equations. Finally, we consider the 2D case at the end of this article.
基金partially supported by the National Science Foundation of China(11971320,11971496)the National Key R&D Program of China(2020YFA0712500)the Guangdong Basic and Applied Basic Research Foundation(2020A1515010530)。
文摘In this paper,we study the controllability of compressible Navier-Stokes equations with density dependent viscosities.For when the shear viscosityμis a positive constant and the bulk viscosityλis a function of the density,it is proven that the system is exactly locally controllable to a constant target trajectory by using boundary control functions.
基金partially supported by the National Natural Sciences Foundation of China(11931010,12061003)。
文摘In this paper,we consider the weak solutions of compressible Navier-StokesLandau-Lifshitz-Maxwell(CNSLLM)system for quantum fluids with a linear density dependent viscosity in a 3D torus.By introducing the cold pressure Pc,we prove the global existence of weak solutions with the pressure P+Pc,where P=Aργwithγ≥1.Our main result extends the one in[13]on the quantum Navier-Stokes equations to the CNSLLM system.
基金Zhai was partially supported by the Guangdong Provincial Natural Science Foundation (2022A1515011977)the Science and Technology Program of Shenzhen(20200806104726001)+1 种基金Zhong was partially supported by the NNSF of China (11901474, 12071359)the Exceptional Young Talents Project of Chongqing Talent (cstc2021ycjh-bgzxm0153)。
文摘We consider the global well-posedness of strong solutions to the Cauchy problem of compressible barotropic Navier-Stokes equations in R^(2). By exploiting the global-in-time estimate to the two-dimensional(2D for short) classical incompressible Navier-Stokes equations and using techniques developed in(SIAM J Math Anal, 2020, 52(2): 1806–1843), we derive the global existence of solutions provided that the initial data satisfies some smallness condition. In particular, the initial velocity with some arbitrary Besov norm of potential part Pu_0 and large high oscillation are allowed in our results. Moreover, we also construct an example with the initial data involving such a smallness condition, but with a norm that is arbitrarily large.
基金Yuxi HU was supported by the NNSFC (11701556)the Yue Qi Young Scholar ProjectChina University of Mining and Technology (Beijing)。
文摘We investigate the low Mach number limit for the isentropic compressible NavierStokes equations with a revised Maxwell's law(with Galilean invariance) in R^(3). By applying the uniform estimates of the error system, it is proven that the solutions of the isentropic Navier-Stokes equations with a revised Maxwell's law converge to that of the incompressible Navier-Stokes equations as the Mach number tends to zero. Moreover, the convergence rates are also obtained.
基金supported by a Research Grant of Andong National University NRF-2015R1A5A1009350 and NRF-2016R1D1A1B03930422。
文摘In this note,we give a new proof to the energy conservation for the weak solutions of the incompressible 3D MHD equations.Moreover,we give the lower bounds for possible singular solutions to the incompressible 3D MHD equations.
文摘This paper mainly studies the blowup phenomenon of solutions to the compressible Euler equations with general time-dependent damping for non-isentropic fluids in two and three space dimensions. When the initial data is assumed to be radially symmetric and the initial density contains vacuum, we obtain that classical solution, especially the density, will blow up on finite time. The results also reveal that damping can really delay the singularity formation.
基金supported by the National Natural Science Foundation of China(12361044)supported by the National Natural Science Foundation of China(12171024,11971217,11971020)supported by the Academic and Technical Leaders Training Plan of Jiangxi Province(20212BCJ23027)。
文摘This paper is concerned with the global well-posedness of the solution to the compressible Navier-Stokes/Allen-Cahn system and its sharp interface limit in one-dimensional space.For the perturbations with small energy but possibly large oscillations of rarefaction wave solutions near phase separation,and where the strength of the initial phase field could be arbitrarily large,we prove that the solution of the Cauchy problem exists for all time,and converges to the centered rarefaction wave solution of the corresponding standard two-phase Euler equation as the viscosity and the thickness of the interface tend to zero.The proof is mainly based on a scaling argument and a basic energy method.
文摘We study the incompressible limit of classical solutions to compressible ideal magneto-hydrodynamics in a domain with a flat boundary.The boundary condition is characteristic and the initial data is general.We first establish the uniform existence of classical solutions with respect to the Mach number.Then,we prove that the solutions converge to the solution of the incompressible MHD system.In particular,we obtain a stronger convergence result by using the dispersion of acoustic waves in the half space.
基金Supported partly by NSF of China(Grant No.11801163)NSF of Hunan Province(Grant Nos.2021JJ50032,2023JJ50164 and 2023JJ50165)Degree&Postgraduate Reform Project of Hunan University of Technology and Hunan Province(Grant Nos.JGYB23009 and 2024JGYB210).
文摘We introduce a factorized Smith method(FSM)for solving large-scale highranked T-Stein equations within the banded-plus-low-rank structure framework.To effectively reduce both computational complexity and storage requirements,we develop techniques including deflation and shift,partial truncation and compression,as well as redesign the residual computation and termination condition.Numerical examples demonstrate that the FSM outperforms the Smith method implemented with a hierarchical HODLR structured toolkit in terms of CPU time.
基金supported by Postdoctoral Science Foundation of China through Grant 2017M610818
文摘We are concerned with the zero dielectric constant limit for the full electromagneto-fluid dynamics in this article. This singular limit is justified rigorously for global smooth solution for both well-prepared and ill-prepared initial data. The explicit convergence rate is also obtained by a elaborate energy estimate. Moreover, we show that for the wellprepared initial data, there is no initial layer, and the electric field always converges strongly to the limit function. While for the ill-prepared data case, there will be an initial layer near t = 0. The strong convergence results only hold outside the initial layer.
文摘In this paper, the solutions of three dimensional incompressible magnetohydrodynamics (MHD) equations are obtained by using sin method and Riccati auxiliary equation. This paper obtains the soliton solutions by the aid of software Mathematica.
文摘In this paper, we consider the global existence and decay rates of strong solutions to the three-dimensional compressible quantum Hall-magneto-hydrodynamics equations. By combing the Lp-Lq estimates for the linearized equations and a standard energy method, the global existence and its convergence rates are obtained in various norms for the solution to the equilibrium state in the whole space when the initial perturbation of the stationary solution is small in some Sobolev norms. More precisely, the decay rates in time of the solution and its first order derivatives in L2-norm are obtained when the L1-norm of the perturbation is bounded.
文摘In this paper, we are concerned with the Cauchy problem of the full compressible Hall-magnetohydrodynamic equations in three-dimensional whole space. By the energy method, global existence of a unique strong solution is established. If further that the L1-norm of the perturbation is bounded, we prove the decay rates in time of the solution and its first-order derivatives in L2-norm via some Lp-Lq estimates by the linearized operator.