期刊文献+
共找到5,795篇文章
< 1 2 250 >
每页显示 20 50 100
Chaotic CS Encryption:An Efficient Image Encryption Algorithm Based on Chebyshev Chaotic System and Compressive Sensing
1
作者 Mingliang Sun Jie Yuan +1 位作者 Xiaoyong Li Dongxiao Liu 《Computers, Materials & Continua》 SCIE EI 2024年第5期2625-2646,共22页
Images are the most important carrier of human information. Moreover, how to safely transmit digital imagesthrough public channels has become an urgent problem. In this paper, we propose a novel image encryptionalgori... Images are the most important carrier of human information. Moreover, how to safely transmit digital imagesthrough public channels has become an urgent problem. In this paper, we propose a novel image encryptionalgorithm, called chaotic compressive sensing (CS) encryption (CCSE), which can not only improve the efficiencyof image transmission but also introduce the high security of the chaotic system. Specifically, the proposed CCSEcan fully leverage the advantages of the Chebyshev chaotic system and CS, enabling it to withstand various attacks,such as differential attacks, and exhibit robustness. First, we use a sparse trans-form to sparse the plaintext imageand then use theArnold transformto perturb the image pixels. After that,we elaborate aChebyshev Toeplitz chaoticsensing matrix for CCSE. By using this Toeplitz matrix, the perturbed image is compressed and sampled to reducethe transmission bandwidth and the amount of data. Finally, a bilateral diffusion operator and a chaotic encryptionoperator are used to perturb and expand the image pixels to change the pixel position and value of the compressedimage, and ultimately obtain an encrypted image. Experimental results show that our method can be resistant tovarious attacks, such as the statistical attack and noise attack, and can outperform its current competitors. 展开更多
关键词 Image encryption chaotic system compressive sensing arnold transform
下载PDF
Color Image Compression and Encryption Algorithm Based on 2D Compressed Sensing and Hyperchaotic System
2
作者 Zhiqing Dong Zhao Zhang +1 位作者 Hongyan Zhou Xuebo Chen 《Computers, Materials & Continua》 SCIE EI 2024年第2期1977-1993,共17页
With the advent of the information security era,it is necessary to guarantee the privacy,accuracy,and dependable transfer of pictures.This study presents a new approach to the encryption and compression of color image... With the advent of the information security era,it is necessary to guarantee the privacy,accuracy,and dependable transfer of pictures.This study presents a new approach to the encryption and compression of color images.It is predicated on 2D compressed sensing(CS)and the hyperchaotic system.First,an optimized Arnold scrambling algorithm is applied to the initial color images to ensure strong security.Then,the processed images are con-currently encrypted and compressed using 2D CS.Among them,chaotic sequences replace traditional random measurement matrices to increase the system’s security.Third,the processed images are re-encrypted using a combination of permutation and diffusion algorithms.In addition,the 2D projected gradient with an embedding decryption(2DPG-ED)algorithm is used to reconstruct images.Compared with the traditional reconstruction algorithm,the 2DPG-ED algorithm can improve security and reduce computational complexity.Furthermore,it has better robustness.The experimental outcome and the performance analysis indicate that this algorithm can withstand malicious attacks and prove the method is effective. 展开更多
关键词 Image encryption image compression hyperchaotic system compressed sensing
下载PDF
Fast compressed sensing spectral measurement with adaptive gradient multiscale resolution
3
作者 蓝若明 刘雪峰 +1 位作者 李天平 白成杰 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第2期298-304,共7页
We propose a fast,adaptive multiscale resolution spectral measurement method based on compressed sensing.The method can apply variable measurement resolution over the entire spectral range to reduce the measurement ti... We propose a fast,adaptive multiscale resolution spectral measurement method based on compressed sensing.The method can apply variable measurement resolution over the entire spectral range to reduce the measurement time by over 75%compared to a global high-resolution measurement.Mimicking the characteristics of the human retina system,the resolution distribution follows the principle of gradually decreasing.The system allows the spectral peaks of interest to be captured dynamically or to be specified a priori by a user.The system was tested by measuring single and dual spectral peaks,and the results of spectral peaks are consistent with those of global high-resolution measurements. 展开更多
关键词 SPECTROMETER compressed sensing adaptive gradient multiscale resolution fast measurement
下载PDF
Enhancing visual security: An image encryption scheme based on parallel compressive sensing and edge detection embedding
4
作者 王一铭 黄树锋 +2 位作者 陈煌 杨健 蔡述庭 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第1期287-302,共16页
A novel image encryption scheme based on parallel compressive sensing and edge detection embedding technology is proposed to improve visual security. Firstly, the plain image is sparsely represented using the discrete... A novel image encryption scheme based on parallel compressive sensing and edge detection embedding technology is proposed to improve visual security. Firstly, the plain image is sparsely represented using the discrete wavelet transform.Then, the coefficient matrix is scrambled and compressed to obtain a size-reduced image using the Fisher–Yates shuffle and parallel compressive sensing. Subsequently, to increase the security of the proposed algorithm, the compressed image is re-encrypted through permutation and diffusion to obtain a noise-like secret image. Finally, an adaptive embedding method based on edge detection for different carrier images is proposed to generate a visually meaningful cipher image. To improve the plaintext sensitivity of the algorithm, the counter mode is combined with the hash function to generate keys for chaotic systems. Additionally, an effective permutation method is designed to scramble the pixels of the compressed image in the re-encryption stage. The simulation results and analyses demonstrate that the proposed algorithm performs well in terms of visual security and decryption quality. 展开更多
关键词 visual security image encryption parallel compressive sensing edge detection embedding
下载PDF
Deformation and failure characteristics of sandstone under uniaxial compression using distributed fiber optic strain sensing 被引量:4
5
作者 Lingfan Zhang Duoxing Yang +1 位作者 Zhonghui Chen Aichun Liu 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2020年第5期1046-1055,共10页
This paper investigates the deformation and fracture propagation of sandstone specimen under uniaxial compression using the distributed fiber optic strain sensing(DFOSS)technology.It shows that the DFOSS-based circumf... This paper investigates the deformation and fracture propagation of sandstone specimen under uniaxial compression using the distributed fiber optic strain sensing(DFOSS)technology.It shows that the DFOSS-based circumferential strains are in agreement with the data monitored with the traditional strain gage.The DFOSS successfully scans the full-field view of axial and circumferential strains on the specimen surface.The spatiotemporal strain measurement based on DFOSS manifests crack closure and elastoplastic deformation,detects initialization of microcrack nucleation,and identifies strain localization within the specimen.The DFOSS well observes the effects of rock heterogeneity on rock deformation.The advantage of DFOSS-based strain acquisition includes the high spatiotemporal resolution of signals and the ability of full-surface strain scanning.The introduction to the DFOSS technology yields a better understanding of the rock damage process under uniaxial compression. 展开更多
关键词 Distributed fiber optic strain sensing (DFOSS) Uniaxial compression Strain localization
下载PDF
Primary Research of EIT Inverse Problem Based on CS (Compressed Sensing) Technique 被引量:1
6
作者 CHANG Tiantian DAI Meng XU Canhua FU Feng YOU Fusheng DONG Xiuzhen 《Journal of Mathematics and System Science》 2013年第1期41-46,共6页
EIT (electrical impedance tomography) problem should be represented by a group of partial differential equation, in numerical calculation: the nonlinear problem should be linearization approximately, and then linea... EIT (electrical impedance tomography) problem should be represented by a group of partial differential equation, in numerical calculation: the nonlinear problem should be linearization approximately, and then linear equations set is obtained, so EIT image reconstruct problem should be considered as a classical ill-posed, ill-conditioned, linear inverse problem. Its biggest problem is the number of unknown is much more than the number of the equations, this result in the low imaging quality. Especially, it can not imaging in center area. For this problem, we induce the CS technique into EIT image reconstruction algorithm. The main contributions in this paper are: firstly, built up the relationship between CS and EIT definitely; secondly, sparse reconstruction is a critical step in CS, built up a general sparse regularization model based on EIT; finally, gives out some EIT imaging models based on sparse regularization method. For different scenarios, compared with traditional Tikhonov regularization (smooth regularization) method, sparse reconstruction method is not only better at anti-noise, and imaging in center area, but also faster and better resolution. 展开更多
关键词 Electrical impedance tomography compressed sensing inverse problem REGULARIZATION sparse reconstruction.
下载PDF
Combination of multi-focus Raman spectroscopy and compressive sensing for parallel monitoring of single-cell dynamics
7
作者 Zhenzhen Li Xiujuan Zhang +4 位作者 Chengui Xiao Da Chen Shushi Huang Pengfei Zhang Guiwen Wang 《Journal of Innovative Optical Health Sciences》 SCIE EI CAS 2021年第6期119-130,共12页
To overcome the low efficiency of conventional confocal Raman spectroscopy,many efforts have been devoted to parallelizing the Raman excitation and acquisition,in which the scattering from multiple foci is projected o... To overcome the low efficiency of conventional confocal Raman spectroscopy,many efforts have been devoted to parallelizing the Raman excitation and acquisition,in which the scattering from multiple foci is projected onto different locations on a spectrometer's CCD,along either its vertical,horizontal dimension,or even both.While the latter projection scheme relieves the limitation on the row numbers of the CCD,the spectra of multiple foci are recorded in one spectral channel,resulting in spectral overlapping.Here,we developed a method under a com-pressive sensing framework to demultiplex the superimposed spectra of multiple cells during their dynamic processes.Unlike the previous methods which ignore the information connection be-tween the spectra of the cells recorded at different time,the proposed method utilizes a prior that a cell's spectra acquired at different time have the same sparsity structure in their principal components.Rather than independently demultiplexing the mixed spectra at the individual time intervals,the method demultiplexes the whole spectral sequence acquired continuously during the dynamic process.By penalizing the sparsity combined from all time intervals,the collaborative optimization of the inversion problem gave more accurate recovery results.The performances of the method were substantiated by a 1D Raman tweezers array,which monitored the germination of multiple bacterial spores.The method can be extended to the monitoring of many living cells randomly scattering on a coverslip,and has a potential to improve the throughput by a few orders. 展开更多
关键词 Confocal Raman spectroscopy compressive sensing single-cell dynamics
下载PDF
Comparison of MRI Under-Sampling Techniques for Compressed Sensing with Translation Invariant Wavelets Using FastTestCS: A Flexible Simulation Tool
8
作者 Christopher Baker 《Journal of Signal and Information Processing》 2016年第4期252-271,共20页
A sparsifying transform for use in Compressed Sensing (CS) is a vital piece of image reconstruction for Magnetic Resonance Imaging (MRI). Previously, Translation Invariant Wavelet Transforms (TIWT) have been shown to ... A sparsifying transform for use in Compressed Sensing (CS) is a vital piece of image reconstruction for Magnetic Resonance Imaging (MRI). Previously, Translation Invariant Wavelet Transforms (TIWT) have been shown to perform exceedingly well in CS by reducing repetitive line pattern image artifacts that may be observed when using orthogonal wavelets. To further establish its validity as a good sparsifying transform, the TIWT is comprehensively investigated and compared with Total Variation (TV), using six under-sampling patterns through simulation. Both trajectory and random mask based under-sampling of MRI data are reconstructed to demonstrate a comprehensive coverage of tests. Notably, the TIWT in CS reconstruction performs well for all varieties of under-sampling patterns tested, even for cases where TV does not improve the mean squared error. This improved Image Quality (IQ) gives confidence in applying this transform to more CS applications which will contribute to an even greater speed-up of a CS MRI scan. High vs low resolution time of flight MRI CS re-constructions are also analyzed showing how partial Fourier acquisitions must be carefully addressed in CS to prevent loss of IQ. In the spirit of reproducible research, novel software is introduced here as FastTestCS. It is a helpful tool to quickly develop and perform tests with many CS customizations. Easy integration and testing for the TIWT and TV minimization are exemplified. Simulations of 3D MRI datasets are shown to be efficiently distributed as a scalable solution for large studies. Comparisons in reconstruction computation time are made between the Wavelab toolbox and Gnu Scientific Library in FastTestCS that show a significant time savings factor of 60×. The addition of FastTestCS is proven to be a fast, flexible, portable and reproducible simulation aid for CS research. 展开更多
关键词 compressed sensing Translation Invariant Wavelet Simulation Software Total Variation l1 Minimization
下载PDF
Compressed sensing estimation of sparse underwater acoustic channels with a large time delay spread 被引量:4
9
作者 伍飞云 周跃海 +1 位作者 童峰 方世良 《Journal of Southeast University(English Edition)》 EI CAS 2014年第3期271-277,共7页
The estimation of sparse underwater acoustic channels with a large time delay spread is investigated under the framework of compressed sensing. For these types of channels, the excessively long impulse response will s... The estimation of sparse underwater acoustic channels with a large time delay spread is investigated under the framework of compressed sensing. For these types of channels, the excessively long impulse response will significantly degrade the convergence rate and tracking capability of the traditional estimation algorithms such as least squares (LS), while excluding the use of the delay-Doppler spread function due to huge computational complexity. By constructing a Toeplitz matrix with a training sequence as the measurement matrix, the estimation problem of long sparse acoustic channels is formulated into a compressed sensing problem to facilitate the efficient exploitation of sparsity. Furthermore, unlike the traditional l1 norm or exponent-based approximation l0 norm sparse recovery strategy, a novel variant of approximate l0 norm called AL0 is proposed, minimization of which leads to the derivation of a hybrid approach by iteratively projecting the steepest descent solution to the feasible set. Numerical simulations as well as sea trial experiments are compared and analyzed to demonstrate the superior performance of the proposed algorithm. 展开更多
关键词 norm constraint sparse underwater acousticchannel compressed sensing
下载PDF
Digital broadcast channel estimation with compressive sensing 被引量:1
10
作者 戚晨皓 吴乐南 《Journal of Southeast University(English Edition)》 EI CAS 2010年第3期389-393,共5页
In order to reduce the pilot number and improve spectral efficiency, recently emerged compressive sensing (CS) is applied to the digital broadcast channel estimation. According to the six channel profiles of the Eur... In order to reduce the pilot number and improve spectral efficiency, recently emerged compressive sensing (CS) is applied to the digital broadcast channel estimation. According to the six channel profiles of the European Telecommunication Standards Institute(ETSI) digital radio mondiale (DRM) standard, the subspace pursuit (SP) algorithm is employed for delay spread and attenuation estimation of each path in the case where the channel profile is identified and the multipath number is known. The stop condition for SP is that the sparsity of the estimation equals the multipath number. For the case where the multipath number is unknown, the orthogonal matching pursuit (OMP) algorithm is employed for channel estimation, while the stop condition is that the estimation achieves the noise variance. Simulation results show that with the same number of pilots, CS algorithms outperform the traditional cubic-spline-interpolation-based least squares (LS) channel estimation. SP is also demonstrated to be better than OMP when the multipath number is known as a priori. 展开更多
关键词 channel estimation compressive sensing (cs digital radio mondiale (DRM) orthogonal frequency division multiplexing (OFDM)
下载PDF
基于Compressed Sensing框架的图像多描述编码方法 被引量:21
11
作者 刘丹华 石光明 +2 位作者 周佳社 高大化 吴家骥 《红外与毫米波学报》 SCIE EI CAS CSCD 北大核心 2009年第4期298-302,共5页
基于新兴的压缩感知(Compressed Sensing,CS)理论,提出了一种抗丢包能力强且结构简单易实现的多描述编码方法.首先对变换后的图像进行交织抽取分块,再对各子块进行随机观测、量化、打包形成多个描述子码流.解码端根据接收码流情况通过... 基于新兴的压缩感知(Compressed Sensing,CS)理论,提出了一种抗丢包能力强且结构简单易实现的多描述编码方法.首先对变换后的图像进行交织抽取分块,再对各子块进行随机观测、量化、打包形成多个描述子码流.解码端根据接收码流情况通过求解优化问题重建原图像.由于随机观测过程简单易实现,故该方法可以以较低的计算复杂度构造出较多的描述子.实验结果表明,在同样的丢包率下,本文方法的重构质量(PSNR)明显优于SPIHT多描述编码方法,且计算复杂度较低. 展开更多
关键词 多描述编码 压缩感知 随机观测 优化问题
下载PDF
Face hallucination via compressive sensing 被引量:1
12
作者 杨学峰 程耀瑜 《Journal of Measurement Science and Instrumentation》 CAS CSCD 2016年第2期149-154,共6页
Face hallucination or super-resolution is an inverse problem which is underdetermined,and the compressive sensing(CS)theory provides an effective way of seeking inverse problem solutions.In this paper,a novel compress... Face hallucination or super-resolution is an inverse problem which is underdetermined,and the compressive sensing(CS)theory provides an effective way of seeking inverse problem solutions.In this paper,a novel compressive sensing based face hallucination method is presented,which is comprised of three steps:dictionary learning、sparse coding and solving maximum a posteriori(MAP)formulation.In the first step,the K-SVD dictionary learning algorithm is adopted to obtain a dictionary which can sparsely represent high resolution(HR)face image patches.In the second step,we seek the sparsest representation for each low-resolution(LR)face image paches input using the learned dictionary,super resolution image blocks are obtained from the sparsest coefficients and dictionaries,which then are assembled into super-resolution(SR)image.Finally,MAP formulation is introduced to satisfy the consistency restrictive condition and obtain the higher quality HR images.The experimental results demonstrate that our approach can achieve better super-resolution faces compared with other state-of-the-art method. 展开更多
关键词 face image super-resolution image face hallucination compressive sensing(cs)
下载PDF
Investigation of prior image constrained compressed sensing-based spectral X-ray CT image reconstruction
13
作者 周正东 余子丽 +1 位作者 张雯雯 管绍林 《Journal of Southeast University(English Edition)》 EI CAS 2016年第4期420-425,共6页
To improve spectral X-ray CT reconstructed image quality, the energy-weighted reconstructed image xbins^W and the separable paraboloidal surrogates(SPS) algorithm are proposed for the prior image constrained compres... To improve spectral X-ray CT reconstructed image quality, the energy-weighted reconstructed image xbins^W and the separable paraboloidal surrogates(SPS) algorithm are proposed for the prior image constrained compressed sensing(PICCS)-based spectral X-ray CT image reconstruction. The PICCS-based image reconstruction takes advantage of the compressed sensing theory, a prior image and an optimization algorithm to improve the image quality of CT reconstructions.To evaluate the performance of the proposed method, three optimization algorithms and three prior images are employed and compared in terms of reconstruction accuracy and noise characteristics of the reconstructed images in each energy bin.The experimental simulation results show that the image xbins^W is the best as the prior image in general with respect to the three optimization algorithms; and the SPS algorithm offers the best performance for the simulated phantom with respect to the three prior images. Compared with filtered back-projection(FBP), the PICCS via the SPS algorithm and xbins^W as the prior image can offer the noise reduction in the reconstructed images up to 80. 46%, 82. 51%, 88. 08% in each energy bin,respectively. M eanwhile, the root-mean-squared error in each energy bin is decreased by 15. 02%, 18. 15%, 34. 11% and the correlation coefficient is increased by 9. 98%, 11. 38%,15. 94%, respectively. 展开更多
关键词 spectral X-ray CT prior image compressed sensing optimization algorithm image reconstruction
下载PDF
Novel imaging methods of stepped frequency radar based on compressed sensing 被引量:4
14
作者 Jihong Liu Shaokun Xu Xunzhang Gao Xiang Li 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2012年第1期47-56,共10页
The theory of compressed sensing (CS) provides a new chance to reduce the data acquisition time and improve the data usage factor of the stepped frequency radar system. In light of the sparsity of radar target refle... The theory of compressed sensing (CS) provides a new chance to reduce the data acquisition time and improve the data usage factor of the stepped frequency radar system. In light of the sparsity of radar target reflectivity, two imaging methods based on CS, termed the CS-based 2D joint imaging algorithm and the CS-based 2D decoupled imaging algorithm, are proposed. These methods incorporate the coherent mixing operation into the sparse dictionary, and take random measurements in both range and azimuth directions to get high resolution radar images, thus can remarkably reduce the data rate and simplify the hardware design of the radar system while maintaining imaging quality. Ex- periments from both simulated data and measured data in the anechoic chamber show that the proposed imaging methods can get more focused images than the traditional fast Fourier trans- form method. Wherein the joint algorithm has stronger robustness and can provide clearer inverse synthetic aperture radar images, while the decoupled algorithm is computationally more efficient but has slightly degraded imaging quality, which can be improved by increasing measurements or using a robuster recovery algorithm nevertheless. 展开更多
关键词 radar imaging compressed sensing (cs stepped frequency random sampling.
下载PDF
Near-source noise suppression of AMT by compressive sensing and mathematical morphology filtering 被引量:32
15
作者 Li Guang Xiao Xiao +4 位作者 Tang Jing-Tian Li Jin Zhu Hui-Jie Zhou Cong Yan Fa-Bao 《Applied Geophysics》 SCIE CSCD 2017年第4期581-589,623,共10页
In deep mineral exploration, the acquisition of audio magnetotelluric (AMT) data is severely affected by ambient noise near the observation sites; This near-field noise restricts investigation depths. Mathematical m... In deep mineral exploration, the acquisition of audio magnetotelluric (AMT) data is severely affected by ambient noise near the observation sites; This near-field noise restricts investigation depths. Mathematical morphological filtering (MMF) proved effective in suppressing large-scale strong and variably shaped noise, typically low-frequency noise, but can not deal with pulse noise of AMT data. We combine compressive sensing and MMF. First we use MMF to suppress the large-scale strong ambient noise; second, we use the improved orthogonal match pursuit (IOMP) algorithm to remove the residual pulse noise. To remove the noise and protect the useful AMT signal, a redundant dictionary that matches with spikes and is insensitive to the useful signal is designed. Synthetic and field data from the Luzong field suggest that the proposed method suppresses the near-source noise and preserves the signal well; thus, better results are obtained that improve the output of either MMF or IOMP. 展开更多
关键词 compressive sensing FILTERING magnetoiellurics signal processing noise
下载PDF
A Novel UWB Signal Sampling Method for Localization based on Compressive Sensing 被引量:4
16
作者 Zhang Lingwen Tan Zhenhui 《China Communications》 SCIE CSCD 2010年第1期65-72,共8页
Ultra-wide-band (UWB) signals are suitable for localization, since their high time resolution can provide precise time of arrival (TOA) estimation. However, one major challenge in UWB signal processing is the requirem... Ultra-wide-band (UWB) signals are suitable for localization, since their high time resolution can provide precise time of arrival (TOA) estimation. However, one major challenge in UWB signal processing is the requirement of high sampling rate which leads to complicated signal processing and expensive hardware. In this paper, we present a novel UWB signal sampling method called UWB signal sampling via temporal sparsity (USSTS). Its sampling rate is much lower than Nyquist rate. Moreover, it is implemented in one step and no extra processing unit is needed. Simulation results show that USSTS can not recover the signal precisely, but for the use in localization, the accuracy of TOA estimation is the same as that in traditional methods. Therefore, USSTS gives a novel and effective solution for the use of UWB signals in localization. 展开更多
关键词 LOCALIZATION sampling Ultra-Wide-Band (UWB) SIGNAL compressIVE sensing (cs)
下载PDF
Joint 2D DOA and Doppler frequency estimation for L-shaped array using compressive sensing 被引量:5
17
作者 WANG Shixin ZHAO Yuan +3 位作者 LAILA Ibrahim XIONG Ying WANG Jun TANG Bin 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2020年第1期28-36,共9页
A joint two-dimensional(2D)direction-of-arrival(DOA)and radial Doppler frequency estimation method for the L-shaped array is proposed in this paper based on the compressive sensing(CS)framework.Revised from the conven... A joint two-dimensional(2D)direction-of-arrival(DOA)and radial Doppler frequency estimation method for the L-shaped array is proposed in this paper based on the compressive sensing(CS)framework.Revised from the conventional CS-based methods where the joint spatial-temporal parameters are characterized in one large scale matrix,three smaller scale matrices with independent azimuth,elevation and Doppler frequency are introduced adopting a separable observation model.Afterwards,the estimation is achieved by L1-norm minimization and the Bayesian CS algorithm.In addition,under the L-shaped array topology,the azimuth and elevation are separated yet coupled to the same radial Doppler frequency.Hence,the pair matching problem is solved with the aid of the radial Doppler frequency.Finally,numerical simulations corroborate the feasibility and validity of the proposed algorithm. 展开更多
关键词 electronic warfare L-shaped array joint parameter estimation L1-norm minimization Bayesian compressive sensing(cs) pair matching
下载PDF
Algorithm for reconstructing compressed sensing color imaging using the quaternion total variation
18
作者 廖帆 严路 +2 位作者 伍家松 韩旭 舒华忠 《Journal of Southeast University(English Edition)》 EI CAS 2015年第1期51-54,共4页
A new method for reconstructing the compressed sensing color image by solving an optimization problem based on total variation in the quaternion field is proposed, which can effectively improve the reconstructing abil... A new method for reconstructing the compressed sensing color image by solving an optimization problem based on total variation in the quaternion field is proposed, which can effectively improve the reconstructing ability of the color image. First, the color image is converted from RGB (red, green, blue) space to CMYK (cyan, magenta, yellow, black) space, which is assigned to a quaternion matrix. Meanwhile, the quaternion matrix is converted into the information of the phase and amplitude by the Euler form of the quatemion. Secondly, the phase and amplitude of the quatemion matrix are used as the smoothness constraints for the compressed sensing (CS) problem to make the reconstructing results more accurate. Finally, an iterative method based on gradient is used to solve the CS problem. Experimental results show that by considering the information of the phase and amplitude, the proposed method can achieve better performance than the existing method that treats the three components of the color image as independent parts. 展开更多
关键词 total variation compressed sensing quatemion sparse reconstruction color image restoration
下载PDF
Compressive sensing based multiuser detector for massive MBM MIMO uplink 被引量:3
19
作者 SONG Wei WANG Wenzheng 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2020年第1期19-27,共9页
Media based modulation(MBM)is expected to be a prominent modulation scheme,which has access to the high data rate by using radio frequency(RF)mirrors and fewer transmit antennas.Associated with multiuser multiple inpu... Media based modulation(MBM)is expected to be a prominent modulation scheme,which has access to the high data rate by using radio frequency(RF)mirrors and fewer transmit antennas.Associated with multiuser multiple input multiple output(MIMO),the MBM scheme achieves better performance than other conventional multiuser MIMO schemes.In this paper,the massive MIMO uplink is considered and a conjunctive MBM transmission scheme for each user is employed.This conjunctive MBM transmission scheme gathers aggregate MBM signals in multiple continuous time slots,which exploits the structured sparsity of these aggregate MBM signals.Under this kind of scenario,a multiuser detector with low complexity based on the compressive sensing(CS)theory to gain better detection performance is proposed.This detector is developed from the greedy sparse recovery technique compressive sampling matching pursuit(CoSaMP)and exploits not only the inherently distributed sparsity of MBM signals but also the structured sparsity of multiple aggregate MBM signals.By exploiting these sparsity,the proposed CoSaMP based multiuser detector achieves reliable detection with low complexity.Simulation results demonstrate that the proposed CoSaMP based multiuser detector achieves better detection performance compared with the conventional methods. 展开更多
关键词 media based modulation(MBM) radio frequency(RF)mirror compressive sensing(cs) multiple input multiple output(MIMO) multiuser detector compressive sampling matching pursuit(CoSaMP).
下载PDF
Root imaging from ground penetrating radar data by CPSO-OMP compressed sensing 被引量:4
20
作者 Chao Li Yaowen Su +1 位作者 Yizhuo Zhang Huimin Yang 《Journal of Forestry Research》 SCIE CAS CSCD 2017年第1期155-162,共8页
As the amount of data produced by ground penetrating radar (GPR) for roots is large, the transmission and the storage of data consumes great resources. To alleviate this problem, we propose here a root imaging algor... As the amount of data produced by ground penetrating radar (GPR) for roots is large, the transmission and the storage of data consumes great resources. To alleviate this problem, we propose here a root imaging algorithm using chaotic particle swarm optimal (CPSO) compressed sensing based on GPR data according to the sparsity of root space. Radar data are decomposed, observed, measured and represented in sparse manner, so roots image can be reconstructed with limited data. Firstly, radar signal measurement and sparse representation are implemented, and the solution space is established by wavelet basis and Gauss random matrix; secondly, the matching function is considered as the fitness function, and the best fitness value is found by a PSO algorithm; then, a chaotic search was used to obtain the global optimal operator; finally, the root image is reconstructed by the optimal operators. A-scan data, B-scan data, and complex data from American GSSI GPR is used, respectively, in the experimental test. For B-scan data, the computation time was reduced 60 % and PSNR was improved 5.539 dB; for actual root data imaging, the reconstruction PSNR was 26.300 dB, and total computation time was only 67.210 s. The CPSO-OMP algorithm overcomes the problem of local optimum trapping and comprehensively enhances the precision during reconstruction. 展开更多
关键词 Chaotic particle swarm compression sensing Ground penetrating radar Orthogonal matching pursuit (OMP) Root imaging
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部