期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Investigate the Effect of the Magnetic Field on the Mechanical Properties of Silicone Rubber-Based Anisotropic Magnetorheological Elastomer during Curing Process
1
作者 Tao Li Ali Abd El-Aty +7 位作者 Cheng Cheng Yizhou Shen Cong Wu Qiucheng Yang Shenghan Hu Yong Xu Jie Tao Xunzhong Guo 《Journal of Renewable Materials》 SCIE EI 2020年第11期1411-1427,共17页
In this investigation,a new silicone rubber-based MRE material was prepared to be used as a forming medium in manufacturing thin-walled complexshaped Ni-based tubes through the bulging process.Thus,it is significant ... In this investigation,a new silicone rubber-based MRE material was prepared to be used as a forming medium in manufacturing thin-walled complexshaped Ni-based tubes through the bulging process.Thus,it is significant to investigate the effect of magnetic field intensity,magnetic field loading time,and angle on the mechanical properties of the prepared MRE material during the curing process.The obtained results showed that increasing the magnetic field intensity during the curing process can improve the orientation of the chain structure in the elastomer matrix effectively.However,its mechanical properties are the best under the corresponding magnetic field intensity of 321 mT.Besides,by extending the magnetic field loading time in the curing process,the orientation of the chain structure was optimized,at the same time,the mechanical properties were also improved,and the best loading time is about 20–25 min.By changing the loading angle of the magnetic field during the curing process,the mechanical properties of the MRE were improved.When the loading angle of the magnetic field is 90°,the elastomer showed the best compression mechanical properties and excellent compression reversibility.Besides,for the anisotropic MRE material,the performance with magnetic compression is always better than that without magnetic compression. 展开更多
关键词 Magnetorheological Elastomer(MRE) magnetic field curing process compression mechanical properties chain structure
下载PDF
Strain-rate Sensitivity of Aluminum 2024-T6/TiB_2 Composites and Aluminum 2024-T6 被引量:1
2
作者 朱德智 郑振兴 CHEN Qi 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2015年第2期256-260,共5页
Strain-rate sensitivities of 55vol%-65vol% aluminum 2024-T6/TiB2 composites and the corresponding aluminum 2024-T6 matrix were investigated using split Hopkinson pressure bar method. The experimental results showed th... Strain-rate sensitivities of 55vol%-65vol% aluminum 2024-T6/TiB2 composites and the corresponding aluminum 2024-T6 matrix were investigated using split Hopkinson pressure bar method. The experimental results showed that 55vol%-65vol% aluminum 2024-T6/TiB2 composites exhibited significant strain-rate sensitivities, which were three times higher than the strain-rate sensitivity of the aluminum 2024-T6 matrix. The strain-rate sensitivity of the aluminum 2024-T6 matrix composites rose obviously with increasing reinforcement content(up to 60%), which agreed with that from the previous researches. But it decreased as the ceramic reinforcement content reached 65%. After high strain rates compression, a large number of dislocations and micro-cracks were found inside the matrix and the Ti B2 particles, respectively. These micro-cracks can accelerate the brittle fracture of the composites. The aluminum 2024-T6/Ti B2 composites showed various fracture characteristics and shear instability was the predominant failure mechanism under dynamic loading. 展开更多
关键词 composite materials mechanical properties dynamic compression strain-rate sensitivity
下载PDF
Enhanced Strength and Ductility Due to Microstructure Refinement and Texture Weakening of the GW102K Alloy by Cyclic Extrusion Compression 被引量:9
3
作者 Jinbao Lin Xinyi Wang +2 位作者 Weijie Ren Xuexia Yang Qudong Wang 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2016年第8期783-789,共7页
The cyclic extrusion compression (CEC) was applied to severely deform the as-extruded GW102K (Mg- 10.0Gd-2.0Y-0.5Zr, wt%) alloy at 350, 400, and 450 ℃, respectively. The microstructure, texture, and grain boundar... The cyclic extrusion compression (CEC) was applied to severely deform the as-extruded GW102K (Mg- 10.0Gd-2.0Y-0.5Zr, wt%) alloy at 350, 400, and 450 ℃, respectively. The microstructure, texture, and grain boundary character distribution of the CECed alloy were investigated in the present work. The mechan- ical properties were measured by uniaxial tension at room temperature. The crack initiation on the longitudinal section near the tensile fracture-surface was investigated by high-resolution scanning elec- tron microscopy (SEM). The result shows that the microstructure was dramatically refined by dynamic recrystallization (DRX). The initial fiber texture was disintegrated and obviously weakened. The 8-passes/ 350 ℃ CECed alloy exhibited yield strength of 318 MPa with an elongation-to-fracture of 16.8%, increased by 41.3% and 162.5%, respectively. Moreover, the elongation-to-fracture of the 8-passes/450 ℃ CECed alloy significantly increased more than 3 times than that of the received alloy. The cracks were mainly initi- ated at twin boundaries and second phase/matrix interfaces during tensile deformation. The microstructure refinement was considered to result in the dramatically enhanced of the strength and ductility. In ad- dition, the texture randomization during CEC is beneficial for enhancing ductility. The standard positive Hall-Petch relationships have been obtained for the CECed GW102K alloy. 展开更多
关键词 Cyclic extrusion compression (CEC) mechanical properties Magnesium alloy Electron hackscatter diffraction (EBSD) Texture
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部