Androgens have similar structures with different biological activities. To identify molecular determinants responsible for the activity difference, we have docked six steroidal androgens to the binding site or the sur...Androgens have similar structures with different biological activities. To identify molecular determinants responsible for the activity difference, we have docked six steroidal androgens to the binding site or the surface of androgen receptor by using molecular docking with computational investigation. The energy was calculated respectively based on the QM (quantum mechanics) and MM (molecular mechanics) methods. The result shows that the allosteric modulation of androgen receptor plays an important role in the binding process between androgens and receptor. The open state receptor is less stable than the close state one, but the latter is more favorable for binding with androgens. It is worthy of note that when the androgen receptors binding or without binding with androgen are in close state, they are difficult to return to their open state. This phenomenon is an exception of the well known two-state model theory in which the two states are reversible. Whether the internal of close state androgen receptor has a combination of androgen or not, the androgen receptor surface can be combined with another androgen, and their surface binding energies could be very close. The result is consistent with the experimental observations, but this phenomenon of continuous combination from open state is also an exception of the two-state model theory.展开更多
基金supported by the National Natural Science Foundation of China (No. 21073034)the State Key Laboratory of Structural Chemistry (No. 20090060)+1 种基金the Natural Science Foundation of Fujian Province (X0650070)the Science and Technology Development Foundation of Fuzhou University (2010-XY-9)
文摘Androgens have similar structures with different biological activities. To identify molecular determinants responsible for the activity difference, we have docked six steroidal androgens to the binding site or the surface of androgen receptor by using molecular docking with computational investigation. The energy was calculated respectively based on the QM (quantum mechanics) and MM (molecular mechanics) methods. The result shows that the allosteric modulation of androgen receptor plays an important role in the binding process between androgens and receptor. The open state receptor is less stable than the close state one, but the latter is more favorable for binding with androgens. It is worthy of note that when the androgen receptors binding or without binding with androgen are in close state, they are difficult to return to their open state. This phenomenon is an exception of the well known two-state model theory in which the two states are reversible. Whether the internal of close state androgen receptor has a combination of androgen or not, the androgen receptor surface can be combined with another androgen, and their surface binding energies could be very close. The result is consistent with the experimental observations, but this phenomenon of continuous combination from open state is also an exception of the two-state model theory.