期刊文献+
共找到3,916篇文章
< 1 2 196 >
每页显示 20 50 100
Flow Field Characteristics of Multi-Trophic Artificial Reef Based on Computation Fluid Dynamics
1
作者 HUANG Junlin LI Jiao +3 位作者 LI Yan GONG Pihai GUAN Changtao XIA Xu 《Journal of Ocean University of China》 CAS CSCD 2024年第2期317-327,共11页
On the basis of computational fluid dynamics,the flow field characteristics of multi-trophic artificial reefs,including the flow field distribution features of a single reef under three different velocities and the ef... On the basis of computational fluid dynamics,the flow field characteristics of multi-trophic artificial reefs,including the flow field distribution features of a single reef under three different velocities and the effect of spacing between reefs on flow scale and the flow state,were analyzed.Results indicate upwelling,slow flow,and eddy around a single reef.Maximum velocity,height,and volume of upwelling in front of a single reef were positively correlated with inflow velocity.The length and volume of slow flow increased with the increase in inflow velocity.Eddies were present both inside and backward,and vorticity was positively correlated with inflow velocity.Space between reefs had a minor influence on the maximum velocity and height of upwelling.With the increase in space from 0.5 L to 1.5 L(L is the reef lehgth),the length of slow flow in the front and back of the combined reefs increased slightly.When the space was 2.0 L,the length of the slow flow decreased.In four different spaces,eddies were present inside and at the back of each reef.The maximum vorticity was negatively correlated with space from 0.5 L to 1.5 L,but under 2.0 L space,the maximum vorticity was close to the vorticity of a single reef under the same inflow velocity. 展开更多
关键词 artificial reef flow field characteristics computation fluid dynamics multi-trophic structure
下载PDF
Application of Computational Fluid Dynamics and Fluid Structure Interaction Techniques for Calculating the 3D Transient Flow of Journal Bearings Coupled with Rotor Systems 被引量:20
2
作者 LI Qiang YU Guichang +1 位作者 LIU Shulian ZHENG Shuiying 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2012年第5期926-932,共7页
Journal bearings are important parts to keep the high dynamic performance of rotor machinery. Some methods have already been proposed to analysis the flow field of journal bearings, and in most of these methods simpli... Journal bearings are important parts to keep the high dynamic performance of rotor machinery. Some methods have already been proposed to analysis the flow field of journal bearings, and in most of these methods simplified physical model and classic Reynolds equation are always applied. While the application of the general computational fluid dynamics (CFD)-fluid structure interaction (FSI) techniques is more beneficial for analysis of the fluid field in a journal bearing when more detailed solutions are needed. This paper deals with the quasi-coupling calculation of transient fluid dynamics of oil film in journal bearings and rotor dynamics with CFD-FSI techniques. The fluid dynamics of oil film is calculated by applying the so-called "dynamic mesh" technique. A new mesh movement approacb is presented while the dynamic mesh models provided by FLUENT are not suitable for the transient oil flow in journal bearings. The proposed mesh movement approach is based on the structured mesh. When the joumal moves, the movement distance of every grid in the flow field of bearing can be calculated, and then the update of the volume mesh can be handled automatically by user defined function (UDF). The journal displacement at each time step is obtained by solving the moving equations of the rotor-bearing system under the known oil film force condition. A case study is carried out to calculate the locus of the journal center and pressure distribution of the journal in order to prove the feasibility of this method. The calculating results indicate that the proposed method can predict the transient flow field of a journal bearing in a rotor-bearing system where more realistic models are involved. The presented calculation method provides a basis for studying the nonlinear dynamic behavior of a general rotor-bearing system. 展开更多
关键词 mesh movement transient flow computational fluid dynamics (cfd fluid-structure interaction (FSI) journal bearing
下载PDF
A Computational Fluid Dynamics (CFD) Analysis of an Undulatory Mechanical Fin Driven by Shape Memory Alloy 被引量:8
3
作者 Yong-Hua Zhang Jian-Hui He +2 位作者 Jie Yang Shi-Wu Zhang Kin Huat Low 《International Journal of Automation and computing》 EI 2006年第4期374-381,共8页
Many fishes use undulatory fin to propel themselves in the underwater environment. These locomotor mechanisms have a popular interest to many researchers. In the present study, we perform a three-dimensional unsteady ... Many fishes use undulatory fin to propel themselves in the underwater environment. These locomotor mechanisms have a popular interest to many researchers. In the present study, we perform a three-dimensional unsteady computation of an undulatory mechanical fin that is driven by Shape Memory Alloy (SMA). The objective of the computation is to investigate the fluid dynamics of force production associated with the undulatory mechanical fin. An unstructured, grid-based, unsteady Navier-Stokes solver with automatic adaptive remeshing is used to compute the unsteady flow around the fin through five complete cycles. The pressure distribution on fin surface is computed and integrated to provide fin forces which are decomposed into lift and thrust. The velocity field is also computed throughout the swimming cycle. Finally, a comparison is conducted to reveal the dynamics of force generation according to the kinematic parameters of the undulatory fin (amplitude, frequency and wavelength). 展开更多
关键词 computational Fluid dynamics (cfd undulatory mechanical fin unsteady flow unstructured mesh Shape Memory Alloy (SMA)
下载PDF
Modeling of gas-solid flow in a CFB riser based on computational particle fluid dynamics 被引量:6
4
作者 Zhang Yinghui Lan Xingying Gao Jinsen 《Petroleum Science》 SCIE CAS CSCD 2012年第4期535-543,共9页
A three-dimensional model for gas-solid flow in a circulating fluidized bed(CFB) riser was developed based on computational particle fluid dynamics(CPFD).The model was used to simulate the gas-solid flow behavior ... A three-dimensional model for gas-solid flow in a circulating fluidized bed(CFB) riser was developed based on computational particle fluid dynamics(CPFD).The model was used to simulate the gas-solid flow behavior inside a circulating fluidized bed riser operating at various superficial gas velocities and solids mass fluxes in two fluidization regimes,a dilute phase transport(DPT) regime and a fast fluidization(FF) regime.The simulation results were evaluated based on comparison with experimental data of solids velocity and holdup,obtained from non-invasive automated radioactive particle tracking and gamma-ray tomography techniques,respectively.The agreement of the predicted solids velocity and holdup with experimental data validated the CPFD model for the CFB riser.The model predicted the main features of the gas-solid flows in the two regimes;the uniform dilute phase in the DPT regime,and the coexistence of the dilute phase in the upper region and the dense phase in the lower region in the FF regime.The clustering and solids back mixing in the FF regime were stronger than those in the DPT regime. 展开更多
关键词 Gas-solid flow circulating fluidized bed computational particle fluid dynamics modeling HYDROdynamics
下载PDF
COMPUTATIONAL FLUID DYNAMICS RESEARCH ON PRESSURE LOSS OF CROSS-FLOW PERFORATED MUFFLER 被引量:14
5
作者 HU Xiaodong ZHOU Yiqi +2 位作者 FANG Jianhua MAN Xiliang ZHAO Zhengxu 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2007年第2期88-93,共6页
The pressure loss of cross-flow perforated of physical modeling, simulation and data processing. muffler has been computed with the procedure Three-dimensional computational fluid dynamics (CFD) has been used to inv... The pressure loss of cross-flow perforated of physical modeling, simulation and data processing. muffler has been computed with the procedure Three-dimensional computational fluid dynamics (CFD) has been used to investigate the relations of porosities, flow velocity and diameter of the holes with the pressure loss. Accordingly, some preliminary results have been obtained that pressure loss increases with porosity descent as nearly a hyperbolic trend, rising flow velocity of the input makes the pressure loss increasing with parabola trend, diameter of holes affects little about pressure loss of the muffler. Otherwise, the holes on the perforated pipes make the air flow gently and meanly, which decreases the air impact to the wall and pipes in the muffler. A practical perforated muffler is used to illustrate the available of this method for pressure loss computation, and the comparison shows that the computation results with the method of CFD has reference value for muffler design. 展开更多
关键词 Perforated muffler Pressure loss computational fluid dynamics (cfd Porosity flow velocity
下载PDF
COMPUTATIONAL FLUID DYNAMICS(CFD) SIMULATIONS OF DRAG REDUCTION WITH PERIODIC MICRO-STRUCTURED WALL 被引量:4
6
作者 LI Gang ZHOU Ming +2 位作者 WU Bo YE Xia CAI Lan 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2008年第2期77-80,共4页
Computational fluid dynamics(CFD) simulations are adopted to investigate rectangular microchannel flows with various periodic micro-structured wall by introducing velocity slip boundary condition at low Reynolds num... Computational fluid dynamics(CFD) simulations are adopted to investigate rectangular microchannel flows with various periodic micro-structured wall by introducing velocity slip boundary condition at low Reynolds number. The purpose of the current study is to numerically find out the effects of periodic micro-structured wall on the flow resistance in rectangular microchannel with the different spacings between microridges ranging from 15 to 60 pm. The simulative results indicate that pressure drop with different spacing between microridges increases linearly with flow velocity and decreases monotonically with slip velocity; Pressure drop reduction also increases with the spacing between microridges at the same condition of slip velocity and flow velocity. The results of numerical simulation are compared with theoretical predictions and experimental results in the literatures. It is found that there is qualitative agreement between them. 展开更多
关键词 Reynoids numbers Slip velocity Drag reduction computational fluid dynamics(cfd simulations
下载PDF
The influence of temperature on flow-induced forces on quartz-crystal-microbalance sensors in a Chinese liquor identification electronic-nose: three-dimensional computational fluid dynamics simulation and analysis 被引量:1
7
作者 Qiang LI Yu GU Huatao WANG 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2019年第9期1301-1312,共12页
An electronic-nose is developed based on eight quartz-crystal-microbalance (QCM) gas sensors in a sensor box, and is used to detect Chinese liquors at room temperature. Each sensor is a highly-accurate and highly-sens... An electronic-nose is developed based on eight quartz-crystal-microbalance (QCM) gas sensors in a sensor box, and is used to detect Chinese liquors at room temperature. Each sensor is a highly-accurate and highly-sensitive oscillator that has experienced airflow disturbances under the condition of varying room temperatures due to unstable flow-induced forces on the sensors surfaces. The three-dimensional (3D) nature of the airflow inside the sensor box and the interactions of the airflow on the sensors surfaces at different temperatures are studied by computational fluid dynamics (CFD) tools. Higher simulation accuracy is achieved by optimizing meshes, meshing the computational domain using a fine unstructural tetrahedron mesh. An optimum temperature, 30 ℃, is obtained by analyzing the distributions of velocity streamlines and the static pressure, as well as the flow-induced forces over time, all of which may be used to improve the identification accuracy of the electronic-nose for achieving stable and repeatable signals by removing the influence of temperature. 展开更多
关键词 computational fluid dynamics (cfd) TEMPERATURE quartz-crystalmicrobalance (QCM) gas sensor ELECTRONIC NOSE IDENTIFICATION accuracy
下载PDF
Computational fluid dynamics simulation of gas-liquid two phases flow in 320 m^3 air-blowing mechanical flotation cell using different turbulence models 被引量:3
8
作者 沈政昌 陈建华 +2 位作者 张谌虎 廖幸锦 李玉琼 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第6期2385-2392,共8页
According to the recently developed single-trough floating machine with the world's largest volume(inflatable mechanical agitation flotation machine with volume of 320 m3) in China, the gas-fluid two-phase flow in... According to the recently developed single-trough floating machine with the world's largest volume(inflatable mechanical agitation flotation machine with volume of 320 m3) in China, the gas-fluid two-phase flow in flotation cell was simulated using computational fluid dynamics method. It is shown that hexahedral mesh scheme is more suitable for the complex structure of the flotation cell than tetrahedral mesh scheme, and a mesh quality ranging from 0.7 to 1.0 is obtained. Comparative studies of the standard k-ε, k-ω and realizable k-ε turbulence models were carried out. It is indicated that the standard k-ε turbulence model could give a result relatively close to the practice and the liquid phase flow field is well characterized. In addition, two obvious recirculation zones are formed in the mixing zones, and the pressure on the rotor and stator is well characterized. Furthermore, the simulation results using improved standard k-ε turbulence model show that surface tension coefficient of 0.072, drag model of Grace and coefficient of 4, and lift coefficient of 0.001 can be achieved. The research results suggest that gas-fluid two-phase flow in large flotation cell can be well simulated using computational fluid dynamics method. 展开更多
关键词 计算流体动力学模拟 k-ε湍流模型 机械搅拌 气液两相流 立方 计算流体力学方法 吹制 空气
下载PDF
Simulation and Analysis on the Two-Phase Flow Fields in a Rotating-Stream-Tray Absorber by Using Computational Fluid Dynamics 被引量:8
9
作者 邵雄飞 吴忠标 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2004年第2期169-173,共5页
The flow field of gas and liquid in a φ150mm rotating-stream-tray (RST) scrubber is simulated by using computational fluid dynamic (CFD) method. The simulation is based on the two-equation RNG κ-ε turbulence model,... The flow field of gas and liquid in a φ150mm rotating-stream-tray (RST) scrubber is simulated by using computational fluid dynamic (CFD) method. The simulation is based on the two-equation RNG κ-ε turbulence model, Eulerian multiphase model, mad a real-shape 3D model with a huge number of meshes. The simulation results include detailed information about velocity, pressure, volume fraction and so on. Some features of the flow field are obtained: liquid is atomized in a thin annular zone; a high velocity air zone prevents water drops at the bottom from flying towards the wall;the pressure varies sharply at the end of blades and so on. The results will be helpful for structure optimization and engineering design. 展开更多
关键词 模拟技术 流体动力学 气体 液体 双相流场
下载PDF
Flow Field and Temperature Field in GaN-MOCVD Reactor Based on Computational Fluid Dynamics Modeling 被引量:1
10
作者 梅书哲 王权 +8 位作者 郝美兰 徐健凯 肖红领 冯春 姜丽娟 王晓亮 刘峰奇 徐现刚 王占国 《Chinese Physics Letters》 SCIE CAS CSCD 2018年第9期82-86,共5页
Metal organic chenlical vapor deposition (AIOCVD) growth systems arc one of the. main types of equipment used for growing single crystal materials, such as GaN. To obtain fihn epitaxial materials with uniform perfor... Metal organic chenlical vapor deposition (AIOCVD) growth systems arc one of the. main types of equipment used for growing single crystal materials, such as GaN. To obtain fihn epitaxial materials with uniform performanee, the flow field and ternperature field in a GaN-MOCVD reactor are investigated by modeling and simulating. To make the simulation results more consistent with the actual situation, the gases in the reactor are considered to be compressible, making it possible to investigate the distributions of gas density and pressure in the reactor. The computational fluid dynamics method is used to stud,v the effects of inlet gas flow velocity, pressure in the reactor, rotational speed of graphite susceptor, and gases used in the growth, which has great guiding~ significance for the growth of GaN fihn materials. 展开更多
关键词 MOCVD flow Field and Temperature Field in GaN-MOCVD Reactor Based on computational Fluid dynamics Modeling GAN
下载PDF
Three-dimensional Computational Fluid Dynamics Modeling of Two-phase Flow in a Structured Packing Column 被引量:4
11
作者 张小斌 姚蕾 +1 位作者 邱利民 张学军 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2013年第9期959-966,共8页
Characterizing the complex two-phase hydrodynamics in structured packed columns requires a powerful modeling tool.The traditional two-dimensional model exhibits limitations when one attempts to model the detailed two-... Characterizing the complex two-phase hydrodynamics in structured packed columns requires a powerful modeling tool.The traditional two-dimensional model exhibits limitations when one attempts to model the detailed two-phase flow inside the columns.The present paper presents a three-dimensional computational fluid dynamics(CFD) model to simulate the two-phase flow in a representative unit of the column.The unit consists of an entire corrugation channel and describes well the real liquid flow conditions.The detailed unsteady two-phase 3D CFD calculations on column packed with Flexipak 1Y were implemented within the volume of fluid(VOF) mathematical framework.The CFD model was validated by comparing the calculated thickness of liquid film with the available experimental data.Special attention was given to quantitative analysis of the effects of gravity on the hydrodynamics.Fluctuations in the liquid mass flow rate and the calculated pressure drop loss were found to be qualitatively in agreement with the experimental observations. 展开更多
关键词 流体力学特性 规整填料塔 三维计算 力学建模 两相流 计算流体动力学 cfd计算 实验数据
下载PDF
Computational Fluid Dynamics(CFD) Analysis and Optimization of Reconstructed Intake System of Cylinder Head Based on Slicing Reverse Method
12
作者 罗通 练章华 +1 位作者 谌贵辉 张强 《Journal of Donghua University(English Edition)》 EI CAS 2019年第2期170-178,共9页
To find out and improve the flow characteristics inside the intake system of cylinder head,the application of computational fluid dynamics(CFD)in the evaluation and optimization of the reconstructed intake system base... To find out and improve the flow characteristics inside the intake system of cylinder head,the application of computational fluid dynamics(CFD)in the evaluation and optimization of the reconstructed intake system based on slicing reverse method was proposed.The flow characteristics were found out through CFD,and the velocity vector field,pressure field and turbulent kinetic energy field for different valve lifts were discussed,which were in good agreement with experimental data,and the quality of reconstruction was evaluated.In order to improve its flow characteristic,an optimization plan was proposed.The results show that the flow characteristics after optimization are obviously improved.The results can provide a reference for the design and optimization of the intake system of cylinder head. 展开更多
关键词 computational fluid dynamics(cfd)analysis cfd optimization INTAKE system SLICING REVERSE METHOD
下载PDF
Computational fluid dynamics of left ventricular assist device under unsteady flow
13
作者 BUMRUNGPETCH J. TAN A.C. 《排灌机械工程学报》 EI CSCD 北大核心 2016年第2期93-98,共6页
Left ventricular assist device( LVAD) in this study is a mechanical tool that is used to support blood flow in the patient with heart disease. It supports left ventricle by building up the pressure to the pump outlet ... Left ventricular assist device( LVAD) in this study is a mechanical tool that is used to support blood flow in the patient with heart disease. It supports left ventricle by building up the pressure to the pump outlet connected to the aorta. This pump was designed based on the magnetic driven centrifugal pump with a unique small washout hole constructed inside the impeller to generate the washout flow passage to prevent the stagnation at the region underneath and around the rotor. Computational fluid dynamics( CFD) was adopted in this study to assess the performance and optimize the design to avoid recirculation and high shear stress which is the main cause of stagnation and blood damage. Transient simulation was used for this study due to the asymmetric design of the washout hole and the complication of the bottom support of the impeller that has a risk of thrombosis,also,it was used to predict the variation of hydraulic performance caused by the rotation of the impeller and pulsed flow at the pump inlet. The simulation results show no excessive stress and no recirculation observed within the computational domain; in addition,the research result also provides information for further optimization and development to the pump. 展开更多
关键词 heart pump left ventricular assist device computational fluid dynamics unsteady flow
下载PDF
Computational Fluid Dynamics Study on Water Flow in a Hollow Helical Pipe
14
作者 Ebrahim Ahmadloo Najmeh Sobhanifar Fatemeh Sadat Hosseini 《Open Journal of Fluid Dynamics》 2014年第2期133-139,共7页
Although curved pipes are used in a wide range of applications, flow in curved pipes is relatively less well known than that in straight ducts. This paper presents a computational fluid dynamics study of isothermal la... Although curved pipes are used in a wide range of applications, flow in curved pipes is relatively less well known than that in straight ducts. This paper presents a computational fluid dynamics study of isothermal laminar single-phase flow of water in a hollow helical pipe at various Reynolds numbers. The ranging of Reynolds numbers of fluid was from 703.2 to 1687.7. The three dimensional governing equations for mass and momentum have been solved. It was found that with increasing Reynolds number and creation of centrifugal forces, a high velocity and pressure region occurs between two tubes, at the outer side of the hollow helical pipe walls. Friction factor decreases as the tendency for turbulence increases. 展开更多
关键词 computational Fluid dynamics Water flow HOLLOW HELICAL PIPE Pressure GRADIENT VELOCITY
下载PDF
Computational Fluid Dynamics (CFD) Modelling to Estimate Fluvial Bank Erosion—A Case Study
15
作者 Emmanouil Spyropoulos Stephen E. Darby 《Journal of Geoscience and Environment Protection》 2020年第7期17-43,共27页
River bank erosion models are an important prerequisite for understanding the development of river meanders and for estimating likely land-loss and potential danger to floodplain infrastructure. Although bank erosion ... River bank erosion models are an important prerequisite for understanding the development of river meanders and for estimating likely land-loss and potential danger to floodplain infrastructure. Although bank erosion models have been developed that consider large-scale mass failure, the contribution of fluvial erosion (the process of particle-by-particle erosion due to the shearing action of the river flow) to bank retreat has not received as much consideration. In principle, such fluvial bank erosion rates can be quantified using excess shear stress formulations, but in practice, it has proven difficult to estimate the parameters involved. In this study, a series of three-dimensional Computational Fluid Dynamics (CFD) simulations for a meander loop on the River Asker (200 m long) at Bridport in southern England were undertaken to elucidate the overall flow structures and in particular to provide estimates of the applied fluid shear stress exerted on the riverbanks. The CFD models, which simulated relatively low and relatively high flow conditions, were established using Fluent 6.2 software. The modelling outcomes show that the key qualitative features of the flow endure even as flow discharge varies. At bank full, the degrees of velocity and simulated shear stresses within the inner bank separation zones are shown to be higher than those observed under low flow conditions, and that these elevated shear stresses may be sufficient to result in the removal of accumulated sediments into the main downstream flow. 展开更多
关键词 computational Fluid dynamics cfd Bank Erosion FLUVIAL
下载PDF
CFD simulation of hydrodynamics and mixing performance in dual shaft eccentric mixers 被引量:2
16
作者 Songsong Wang Xia Xiong +5 位作者 Peiqiao Liu Qiongzhi Zhang Qian Zhang Changyuan Tao Yundong Wang Zuohua Liu 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第10期297-309,共13页
This work aims to systematically study hydrodynamics and mixing characteristics of non-Newtonian fluid(carboxyl methyl cellulose,CMC)in dual shaft eccentric mixer.Fluid rheology was described by the power law rheologi... This work aims to systematically study hydrodynamics and mixing characteristics of non-Newtonian fluid(carboxyl methyl cellulose,CMC)in dual shaft eccentric mixer.Fluid rheology was described by the power law rheological model.Computational fluid dynamics was employed to simulate the velocity field and shear rate inside the stirred tank.The influence mechanism of the rotational modes,height difference between impellers,impeller eccentricities,and impeller types on the flow field have been well investigated.We studied the performance of different dual-shaft eccentric mixers at the constant power input with its fluid velocity profiles,average shear strain rate,mixing time and mixing energy.The counter-rotation mode shows better mixing performance than co-rotation mode,and greater eccentricity can shorten mixing time on the basis of same stirred condition.To intensify the hydrodynamic interaction between impellers and enhance the overall mixing performance of the dual shaft eccentric mixers,it is critical to have a reasonable combination of impellers and an appropriate spatial position of impellers. 展开更多
关键词 Dual shaft eccentric mixers Non-Newtonian fluid Mixing Laminar flow computational fluid dynamics
下载PDF
Comprehensive Examination of Solar Panel Design: A Focus on Thermal Dynamics
17
作者 Kajal Sheth Dhvanil Patel 《Smart Grid and Renewable Energy》 2024年第1期15-33,共19页
In the 21st century, the deployment of ground-based Solar Photovoltaic (PV) Modules has seen exponential growth, driven by increasing demands for green, clean, and renewable energy sources. However, their usage is con... In the 21st century, the deployment of ground-based Solar Photovoltaic (PV) Modules has seen exponential growth, driven by increasing demands for green, clean, and renewable energy sources. However, their usage is constrained by certain limitations. Notably, the efficiency of solar PV modules on the ground peaks at a maximum of 25%, and there are concerns regarding their long-term reliability, with an expected lifespan of approximately 25 years without failures. This study focuses on analyzing the thermal efficiency of PV Modules. We have investigated the temperature profile of PV Modules under varying environmental conditions, such as air velocity and ambient temperature, utilizing Computational Fluid Dynamics (CFD). This analysis is crucial as the efficiency of PV Modules is significantly impacted by changes in the temperature differential relative to the environment. Furthermore, the study highlights the effect of airflow over solar panels on their temperature. It is found that a decrease in the temperature of the PV Module increases Open Circuit Voltage, underlining the importance of thermal management in optimizing solar panel performance. 展开更多
关键词 Solar Photovoltaic (PV) Modules Thermal Efficiency Analysis Open Circuit Voltage computational Fluid dynamics (cfd) Solar Panel Temperature Profile
下载PDF
Flow Ripple of Axial Piston Pump with Computational Fluid Dynamic Simulation Using Compressible Hydraulic Oil 被引量:21
18
作者 MA Ji'en XU Bing ZHANG Bin YANG Huayong 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2010年第1期45-52,共8页
The flow ripple, which is the source of noise in an axial piston pump, is widely studied today with the computational fluid dynamic(CFD) technology development. In the traditional CFD modeling, the fluid compressibi... The flow ripple, which is the source of noise in an axial piston pump, is widely studied today with the computational fluid dynamic(CFD) technology development. In the traditional CFD modeling, the fluid compressibility, which strongly influences the accuracy of the flow ripple simulation results, is often neglected. So a compressible sub-model was added with user defined function(UDF) in the CFD model to predict the flow ripple. At the same time, a test rig of flow ripple was built to study the validity of simulation. The flow ripple of pump was tested with different working parameters, including the rotation speed and the working pressure. The comparisons with experimental results show that the validity of the CFD model with compressible hydraulic oil is acceptable in analyzing the flow tipple characteristics. In this paper, the improved CFD model increases the accuracy of flow ripple rate to about one-magnitude order. Therefore, the compressible model of hydraulic oil is necessary in the flow ripple investigation of CFD simulation. The compressibility of hydraulic oil has significant effect on flow ripple, and the compression ripple takes about 88% of the total flow ripple of pump. Leakage ripple has the lowest proportion of about 4%, and geometrical ripple leakage ripple takes the remnant 8%. Besides, the influence of working parameters was investigated through the CFD simulations and experimental measurements. Comparison results show that the amplitude of flow ripple grows with the increasing of rotation speed and working pressure, and the flow ripple rate is independent of the rotation speed. However, flow ripple rate of piston pump grows with the increasing of working pressure, because the leakage ripple will increase with the pressure growing. The investigation on flow ripple of an axial piston pump using compressible hydraulic oil provides a more validity simulation model for the CFD analyzing and is beneficial to further understanding of the flow ripple characteristics in an axial piston pump. 展开更多
关键词 axial piston pump flow ripple computational fluid dynamics
下载PDF
Application of computational fluid dynamic to model the hydraulic performance of subsurface flow wetlands 被引量:17
19
作者 FAN Liwei Hai Reti +2 位作者 WANG Wenxing LU Zexiang YANG Zhiming 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2008年第12期1415-1422,共8页
A subsurface flow wetland(SSFW)was simulated using a commercial computational fluid dynamic(CFD)code.The constructed media was simulated using porous media and the liquid resident time distribution(RTD)in the SSFW was... A subsurface flow wetland(SSFW)was simulated using a commercial computational fluid dynamic(CFD)code.The constructed media was simulated using porous media and the liquid resident time distribution(RTD)in the SSFW was obtained using the particle trajectory model.The effect of wetland configuration and operating conditions on the hydraulic performance of the SSFW were investigated.The results indicated that the hydraulic performance of the SSFW was predominantly affected by the wetland configuration.The hydr... 展开更多
关键词 subsurface flow wetland computational fluid dynamic resident time distribution hydraulic performance
下载PDF
Application of computational fluid dynamics simulation for submarine oil spill 被引量:3
20
作者 YANG Zhenglong YU Jianxing +3 位作者 LI Zhigan CHEN Haicheng JIANG Meirong CHEN Xi 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2018年第11期104-115,共12页
Computational fluid dynamics (CFD) codes are being increasingly used in the simulation of submarine oil spills. This study focuses on the process of oil spills, from damaged submarine pipes, to the sea surface, usin... Computational fluid dynamics (CFD) codes are being increasingly used in the simulation of submarine oil spills. This study focuses on the process of oil spills, from damaged submarine pipes, to the sea surface, using numerical models. The underwater oil spill model is developed, and a description of the governing equations is proposed, along with modifications required for the particalization of the control volume. Available experimental data were introduced to evaluate the validity of the CFD predictions, the results of which proved to be in good agreement with the experimental data. The effects of oil leak rate, leak diameter, current velocity, and oil density are investigated, by the validated CFD model, to estimate the undersea leakage time, the lateral migration distance, and surface diffusion range when the oil reaches the sea surface. Results indicate that the leakage time and lateral migration distance increase with decreasing leak rates and leak diameter, and increase with increasing current velocity and oil density. On the other hand, a large leak diameter, high density, high leak rate, or fast currents result in a greater surface diffusion range. The findings and analysis presented here will provide practical predictions of oil spills, and guidance for emergency rescues. 展开更多
关键词 oil spill computational fluid dynamics (cfd oil particles current velocity
下载PDF
上一页 1 2 196 下一页 到第
使用帮助 返回顶部