This paper discuss the stereographic method of martensitic transformation (MT)in the view of computer graphics (CG) and programs are programmed to realize this method. Habit plane resulting from the programs agrees wi...This paper discuss the stereographic method of martensitic transformation (MT)in the view of computer graphics (CG) and programs are programmed to realize this method. Habit plane resulting from the programs agrees with that of numerical analysis in terms of the lattice parameters of austenite and martensite and shear mechanism supposed in Fe-22%Ni-0.8%C alloy, so does orientation relationships.展开更多
As the advent and growing popularity of image rendering software,photorealistic computer graphics are becoming more and more perceptually indistinguishable from photographic images.If the faked images are abused,it ma...As the advent and growing popularity of image rendering software,photorealistic computer graphics are becoming more and more perceptually indistinguishable from photographic images.If the faked images are abused,it may lead to potential social,legal or private consequences.To this end,it is very necessary and also challenging to find effective methods to differentiate between them.In this paper,a novel leading digit law,also called Benford's law,based method to identify computer graphics is proposed.More specifically,statistics of the most significant digits are extracted from image's Discrete Cosine Transform(DCT) coefficients and magnitudes of image's gradient,and then the Support Vector Machine(SVM) based classifiers are built.Results of experiments on the image datasets indicate that the proposed method is comparable to prior works.Besides,it possesses low dimensional features and low computational complexity.展开更多
Based on computer graphics principle, technology and 3D graphics software, this paper deals with the 3D part design, assembly and animation of shearer in longwall integrated mechanized coal mining. The matixes of kine...Based on computer graphics principle, technology and 3D graphics software, this paper deals with the 3D part design, assembly and animation of shearer in longwall integrated mechanized coal mining. The matixes of kinetic and geometry relationships and 3 dimension space coordinate systems are built for the cut drums, arms and shearer body. The methods of 3D modeling, dynamic simulation and relative technique problems are discussed.展开更多
This paper advances a three-dimensional space interpolation method of grey / depth image sequence, which breaks free from the limit of original practical photographing route. Pictures can cruise at will in space. By u...This paper advances a three-dimensional space interpolation method of grey / depth image sequence, which breaks free from the limit of original practical photographing route. Pictures can cruise at will in space. By using space sparse sampling, great memorial capacity can be saved and reproduced scenes can be controlled. To solve time consuming and complex computations in three-dimensional interpolation algorithm, we have studied a fast and practical algorithm of scattered space lattice and that of 'Warp' algorithm with proper depth. By several simple aspects of three dimensional space interpolation, we succeed in developing some simple and practical algorithms. Some results of simulated experiments with computers have shown that the new method is absolutely feasible.展开更多
During the last years, the topic of accessibility of cultural heritage is getting so important all around the Europe. For disseminating a research data and information, it is important to use a simple language and an...During the last years, the topic of accessibility of cultural heritage is getting so important all around the Europe. For disseminating a research data and information, it is important to use a simple language and an effective communication. The data research produced by specialists has three formal levels: The third one of communication system aims to break barriers to reach a wide audience. The present study wants to demonstrate the role of images in the process of deductive inference by three dimensional (3D) reconstruction of cultural heritage. The case study of Federico da Montefeltro office shows how inter-disciplinary works and technological resource can help society to understand history and meaning of heritage.展开更多
We look at expected developments in computer graphics system capabilities for the next decade.the underlying thrust is an expected system hardware capability increase of around 50% per year.Memory sizes are expected t...We look at expected developments in computer graphics system capabilities for the next decade.the underlying thrust is an expected system hardware capability increase of around 50% per year.Memory sizes are expected to double every 12 to 18 months.Most of this system capability in- crease will be used in better and more elaborate simulations,detailed analyses of experimental and com- puted data(i.e.visualization)and more convenient user inputs.The overall effect by the end of the decade will be an increase in simulation capabilties of about fifty-fold,bringing affordable detailed analy- sis and interpretation of data to all engineering,scientific and business enterprises.Concomitant with these system growths is a need to re-examine graphics algorithms with the view of effectively utilizing the vastly increased memory sizes and employing specialized autonomous parallel computing structure.展开更多
Physics-based fluid simulation has played an increasingly important role in the computer graphics community.Recent methods in this area have greatly improved the generation of complex visual effects and its computatio...Physics-based fluid simulation has played an increasingly important role in the computer graphics community.Recent methods in this area have greatly improved the generation of complex visual effects and its computational efficiency.Novel techniques have emerged to deal with complex boundaries,multiphase fluids,gas-liquid interfaces,and fine details.The parallel use of machine learning,image processing,and fluid control technologies has brought many interesting and novel research perspectives.In this survey,we provide an introduction to theoretical concepts underpinning physics-based fuid simulation and their practical implementation,with the aim for it to serve as a guide for both newcomers and seasoned researchers to explore the field of physics-based fuid simulation,with a focus on developments in the last decade.Driven by the distribution of recent publications in the field,we structure our survey to cover physical background;discretization approaches;computational methods that address scalability;fuid interactions with other materials and interfaces;and methods for expressive aspects of surface detail and control.From a practical perspective,we give an overview of existing implementations available for the above methods.展开更多
We introduce CURDIS,a template for algorithms to discretize arcs of regular curves by incrementally producing a list of support pixels covering the arc.In this template,algorithms proceed by finding the tangent quadra...We introduce CURDIS,a template for algorithms to discretize arcs of regular curves by incrementally producing a list of support pixels covering the arc.In this template,algorithms proceed by finding the tangent quadrant at each point of the arc and determining which side the curve exits the pixel according to a tailored criterion.These two elements can be adapted for any type of curve,leading to algorithms dedicated to the shape of specific curves.While the calculation of the tangent quadrant for various curves,such as lines,conics,or cubics,is simple,it is more complex to analyze how pixels are traversed by the curve.In the case of conic arcs,we found a criterion for determining the pixel exit side.This leads us to present a new algorithm,called CURDIS-C,specific to the discretization of conics,for which we provide all the details.Surprisingly,the criterion for conics requires between one and three sign tests and four additions per pixel,making the algorithm efficient for resource-constrained systems and feasible for fixed-point or integer arithmetic implementations.Our algorithm also perfectly handles the pathological cases in which the conic intersects a pixel twice or changes quadrants multiple times within this pixel,achieving this generality at the cost of potentially computing up to two square roots per arc.We illustrate the use of CURDIS for the discretization of different curves,such as ellipses,hyperbolas,and parabolas,even when they degenerate into lines or corners.展开更多
This work demonstrates in practical terms the evolutionary concepts and computational applications of Parametric Curves.Specific cases were drawn from higher order parametric Bezier curves of degrees 2 and above.Bezie...This work demonstrates in practical terms the evolutionary concepts and computational applications of Parametric Curves.Specific cases were drawn from higher order parametric Bezier curves of degrees 2 and above.Bezier curves find real life applications in diverse areas of Engineering and Computer Science,such as computer graphics,robotics,animations,virtual reality,among others.Some of the evolutionary issues explored in this work are in the areas of parametric equations derivations,proof of related theorems,first and second order calculus related computations,among others.A Practical case is demonstrated using a graphical design,physical hand sketching,and programmatic implementation of two opposite-faced handless cups,all evolved using quadratic Bezier curves.The actual drawing was realized using web graphics canvas programming based on HTML 5 and JavaScript.This work will no doubt find relevance in computational researches in the areas of graphics,web programming,automated theorem proofs,robotic motions,among others.展开更多
An efficient voxelization algorithm is presented for polygonal models by using the hardware support for the 2 D rasterization algorithm and the GPU programmable function to satisfy the volumetric display system. The v...An efficient voxelization algorithm is presented for polygonal models by using the hardware support for the 2 D rasterization algorithm and the GPU programmable function to satisfy the volumetric display system. The volume is sampled into slices by the rendering hardware and then slices are rasterated into a series of voxels. A composed buffer is used to record encoded voxels of the target volume to reduce the graphic memory requirement. In the algorithm, dynamic vertexes and index buffers are used to improve the voxelization efficiency. Experimental results show that the algorithm is efficient for a true 3-D display system.展开更多
A new method for shape modification of non-uniform rational B-splines (NURBS) curves was presented, which was based on constrained optimization by means of altering the corresponding weights of their control points. U...A new method for shape modification of non-uniform rational B-splines (NURBS) curves was presented, which was based on constrained optimization by means of altering the corresponding weights of their control points. Using this method, the original NURBS curve was modified to satisfy the specified geometric constraints, including single point and multi-point constraints. With the introduction of free parameters, the shapes of modified NURBS curves could be further controlled by users without destroying geometric constraints and seem more naturally. Since explicit formulae were derived to compute new weights of the modified curve, the method was simple and easy to program. Practical examples showed that the method was applicable for computer aided design (CAD) system.展开更多
Using a bi-cubic Coons surface, a method for G1-continuous interpolation of an arbitrary sequence of points on an implicitly or parametrically defined surface with a specified tangent direction at every point was pres...Using a bi-cubic Coons surface, a method for G1-continuous interpolation of an arbitrary sequence of points on an implicitly or parametrically defined surface with a specified tangent direction at every point was presented. Firstly construct a G1-continuous composite Coons surface patch, and then compute the intersection of the surface patch and the given surface. The desired interpolation curve is the intersection curve. Unlike some existing methods, several free parameters were introduced into the method that can be used in subsequent interactive modification so that the last curve's shape meets the demand. Experiments demonstrate the method is simple, feasible and applicable to computer aided design and computer graphics, etc.展开更多
Dynamic simulation system of maize growth is developed by the physiological and ecological model,morphological structure model,computer science and virtual reality technology,to improve the level of precise operation ...Dynamic simulation system of maize growth is developed by the physiological and ecological model,morphological structure model,computer science and virtual reality technology,to improve the level of precise operation of maize production.The computer graphics algorithms,virtual reality technology,animation design and information integration technology are applied to maize production by this system.establishment of dynamic simulation system of maize growth is conducive to raise level of precise operation in maize production.The system also can assist the relevant production research and testing,to reduce cost and improve efficiency.展开更多
A hidden line removal algorithm for bi parametric surfaces is presented and illustrated by some experimental results. The enclosure test is done using area coordinates. A technique of moving box of encirclement is p...A hidden line removal algorithm for bi parametric surfaces is presented and illustrated by some experimental results. The enclosure test is done using area coordinates. A technique of moving box of encirclement is presented. It is found that the algorithm is of general purpose, requires minimal computer storage, has high accuracy and simplicity, and is very easy to be implemented on a computer.展开更多
Rendering technology in computer graphics (CG) is now capable of producing highly photorealistic images, giving rise to the problem of how to identify CG images from natural images. Some methods were proposed to sol...Rendering technology in computer graphics (CG) is now capable of producing highly photorealistic images, giving rise to the problem of how to identify CG images from natural images. Some methods were proposed to solve this problem. In this paper, we give a novel method from a new point of view of image perception. Although the photorealistic CG images are very similar to natural images, they are surrealistic and smoother than natural images, thus leading to the difference in perception. A pert of features are derived from fractal dimension to capture the difference in color perception between CG images and natural images, and several generalized dimensions are used as the rest features to capture difference in coarseness. The effect of these features is verified by experiments. The average accuracy is over 91.2%.展开更多
The skewed symmetry detection plays an improtant role in three-dimensional(3-D) reconstruction. The skewed symmetry depicts a real symmetry viewed from some unknown viewing directions. And the skewed symmetry detect...The skewed symmetry detection plays an improtant role in three-dimensional(3-D) reconstruction. The skewed symmetry depicts a real symmetry viewed from some unknown viewing directions. And the skewed symmetry detection can decrease the geometric constrains and the complexity of 3-D reconstruction. The detection technique for the quadric curve ellipse proposed by Sugimoto is improved to further cover quadric curves including hyperbola and parabola. With the parametric detection, the 3-D quadric curve projection matching is automatical- ly accomplished. Finally, the skewed symmetry surface of the quadric surface solid is obtained. Several examples are used to verify the feasibility of the algorithm and satisfying results can be obtained.展开更多
Change detection(CD)is becoming indispensable for unmanned aerial vehicles(UAVs),especially in the domain of water landing,rescue and search.However,even the most advanced models require large amounts of data for mode...Change detection(CD)is becoming indispensable for unmanned aerial vehicles(UAVs),especially in the domain of water landing,rescue and search.However,even the most advanced models require large amounts of data for model training and testing.Therefore,sufficient labeled images with different imaging conditions are needed.Inspired by computer graphics,we present a cloning method to simulate inland-water scene and collect an auto-labeled simulated dataset.The simulated dataset consists of six challenges to test the effects of dynamic background,weather,and noise on change detection models.Then,we propose an image translation framework that translates simulated images to synthetic images.This framework uses shared parameters(encoder and generator)and 22×22 receptive fields(discriminator)to generate realistic synthetic images as model training sets.The experimental results indicate that:1)different imaging challenges affect the performance of change detection models;2)compared with simulated images,synthetic images can effectively improve the accuracy of supervised models.展开更多
Realistic animation of various interactions between multiple fluids, possibly undergoing phase change, is a challenging task in computer graphics. The visual scope of multi-phase multi-fluid phenomena covers complex t...Realistic animation of various interactions between multiple fluids, possibly undergoing phase change, is a challenging task in computer graphics. The visual scope of multi-phase multi-fluid phenomena covers complex tangled surface structures and rich color variations, which can greatly enhance visual effect in graphics applications. Describing such phenomena requires more complex models to handle challenges involving the calculation of interactions, dynamics and spatial distribution of multiple phases, which are often involved and hard to obtain real-time performance. Recently, a diverse set of algorithms have been introduced to implement the complex multi-fluid phenomena based on the governing physical laws and novel discretization methods to accelerate the overall computation while ensuring numerical stability. By sorting through the target phenomena of recent research in the broad subject of multiple fluids, this state-of-the-art report summarizes recent advances on multi-fluid simulation in computer graphics.展开更多
文摘This paper discuss the stereographic method of martensitic transformation (MT)in the view of computer graphics (CG) and programs are programmed to realize this method. Habit plane resulting from the programs agrees with that of numerical analysis in terms of the lattice parameters of austenite and martensite and shear mechanism supposed in Fe-22%Ni-0.8%C alloy, so does orientation relationships.
文摘As the advent and growing popularity of image rendering software,photorealistic computer graphics are becoming more and more perceptually indistinguishable from photographic images.If the faked images are abused,it may lead to potential social,legal or private consequences.To this end,it is very necessary and also challenging to find effective methods to differentiate between them.In this paper,a novel leading digit law,also called Benford's law,based method to identify computer graphics is proposed.More specifically,statistics of the most significant digits are extracted from image's Discrete Cosine Transform(DCT) coefficients and magnitudes of image's gradient,and then the Support Vector Machine(SVM) based classifiers are built.Results of experiments on the image datasets indicate that the proposed method is comparable to prior works.Besides,it possesses low dimensional features and low computational complexity.
文摘Based on computer graphics principle, technology and 3D graphics software, this paper deals with the 3D part design, assembly and animation of shearer in longwall integrated mechanized coal mining. The matixes of kinetic and geometry relationships and 3 dimension space coordinate systems are built for the cut drums, arms and shearer body. The methods of 3D modeling, dynamic simulation and relative technique problems are discussed.
文摘This paper advances a three-dimensional space interpolation method of grey / depth image sequence, which breaks free from the limit of original practical photographing route. Pictures can cruise at will in space. By using space sparse sampling, great memorial capacity can be saved and reproduced scenes can be controlled. To solve time consuming and complex computations in three-dimensional interpolation algorithm, we have studied a fast and practical algorithm of scattered space lattice and that of 'Warp' algorithm with proper depth. By several simple aspects of three dimensional space interpolation, we succeed in developing some simple and practical algorithms. Some results of simulated experiments with computers have shown that the new method is absolutely feasible.
文摘During the last years, the topic of accessibility of cultural heritage is getting so important all around the Europe. For disseminating a research data and information, it is important to use a simple language and an effective communication. The data research produced by specialists has three formal levels: The third one of communication system aims to break barriers to reach a wide audience. The present study wants to demonstrate the role of images in the process of deductive inference by three dimensional (3D) reconstruction of cultural heritage. The case study of Federico da Montefeltro office shows how inter-disciplinary works and technological resource can help society to understand history and meaning of heritage.
文摘We look at expected developments in computer graphics system capabilities for the next decade.the underlying thrust is an expected system hardware capability increase of around 50% per year.Memory sizes are expected to double every 12 to 18 months.Most of this system capability in- crease will be used in better and more elaborate simulations,detailed analyses of experimental and com- puted data(i.e.visualization)and more convenient user inputs.The overall effect by the end of the decade will be an increase in simulation capabilties of about fifty-fold,bringing affordable detailed analy- sis and interpretation of data to all engineering,scientific and business enterprises.Concomitant with these system growths is a need to re-examine graphics algorithms with the view of effectively utilizing the vastly increased memory sizes and employing specialized autonomous parallel computing structure.
基金funded by National Key R&D Program of China(No.2022ZD0118001)National Natural Science Foundation of China(Nos.62376025 and 62332017)+1 种基金Horizon 2020-Marie SklodowskaCurie Action-Individual Fellowships(No.895941)Guangdong Basic and Applied Basic Research Foundation(No.2023A1515030177)。
文摘Physics-based fluid simulation has played an increasingly important role in the computer graphics community.Recent methods in this area have greatly improved the generation of complex visual effects and its computational efficiency.Novel techniques have emerged to deal with complex boundaries,multiphase fluids,gas-liquid interfaces,and fine details.The parallel use of machine learning,image processing,and fluid control technologies has brought many interesting and novel research perspectives.In this survey,we provide an introduction to theoretical concepts underpinning physics-based fuid simulation and their practical implementation,with the aim for it to serve as a guide for both newcomers and seasoned researchers to explore the field of physics-based fuid simulation,with a focus on developments in the last decade.Driven by the distribution of recent publications in the field,we structure our survey to cover physical background;discretization approaches;computational methods that address scalability;fuid interactions with other materials and interfaces;and methods for expressive aspects of surface detail and control.From a practical perspective,we give an overview of existing implementations available for the above methods.
文摘We introduce CURDIS,a template for algorithms to discretize arcs of regular curves by incrementally producing a list of support pixels covering the arc.In this template,algorithms proceed by finding the tangent quadrant at each point of the arc and determining which side the curve exits the pixel according to a tailored criterion.These two elements can be adapted for any type of curve,leading to algorithms dedicated to the shape of specific curves.While the calculation of the tangent quadrant for various curves,such as lines,conics,or cubics,is simple,it is more complex to analyze how pixels are traversed by the curve.In the case of conic arcs,we found a criterion for determining the pixel exit side.This leads us to present a new algorithm,called CURDIS-C,specific to the discretization of conics,for which we provide all the details.Surprisingly,the criterion for conics requires between one and three sign tests and four additions per pixel,making the algorithm efficient for resource-constrained systems and feasible for fixed-point or integer arithmetic implementations.Our algorithm also perfectly handles the pathological cases in which the conic intersects a pixel twice or changes quadrants multiple times within this pixel,achieving this generality at the cost of potentially computing up to two square roots per arc.We illustrate the use of CURDIS for the discretization of different curves,such as ellipses,hyperbolas,and parabolas,even when they degenerate into lines or corners.
文摘This work demonstrates in practical terms the evolutionary concepts and computational applications of Parametric Curves.Specific cases were drawn from higher order parametric Bezier curves of degrees 2 and above.Bezier curves find real life applications in diverse areas of Engineering and Computer Science,such as computer graphics,robotics,animations,virtual reality,among others.Some of the evolutionary issues explored in this work are in the areas of parametric equations derivations,proof of related theorems,first and second order calculus related computations,among others.A Practical case is demonstrated using a graphical design,physical hand sketching,and programmatic implementation of two opposite-faced handless cups,all evolved using quadratic Bezier curves.The actual drawing was realized using web graphics canvas programming based on HTML 5 and JavaScript.This work will no doubt find relevance in computational researches in the areas of graphics,web programming,automated theorem proofs,robotic motions,among others.
文摘An efficient voxelization algorithm is presented for polygonal models by using the hardware support for the 2 D rasterization algorithm and the GPU programmable function to satisfy the volumetric display system. The volume is sampled into slices by the rendering hardware and then slices are rasterated into a series of voxels. A composed buffer is used to record encoded voxels of the target volume to reduce the graphic memory requirement. In the algorithm, dynamic vertexes and index buffers are used to improve the voxelization efficiency. Experimental results show that the algorithm is efficient for a true 3-D display system.
文摘A new method for shape modification of non-uniform rational B-splines (NURBS) curves was presented, which was based on constrained optimization by means of altering the corresponding weights of their control points. Using this method, the original NURBS curve was modified to satisfy the specified geometric constraints, including single point and multi-point constraints. With the introduction of free parameters, the shapes of modified NURBS curves could be further controlled by users without destroying geometric constraints and seem more naturally. Since explicit formulae were derived to compute new weights of the modified curve, the method was simple and easy to program. Practical examples showed that the method was applicable for computer aided design (CAD) system.
文摘Using a bi-cubic Coons surface, a method for G1-continuous interpolation of an arbitrary sequence of points on an implicitly or parametrically defined surface with a specified tangent direction at every point was presented. Firstly construct a G1-continuous composite Coons surface patch, and then compute the intersection of the surface patch and the given surface. The desired interpolation curve is the intersection curve. Unlike some existing methods, several free parameters were introduced into the method that can be used in subsequent interactive modification so that the last curve's shape meets the demand. Experiments demonstrate the method is simple, feasible and applicable to computer aided design and computer graphics, etc.
基金Supported by Supported by National High Technology Research and Development Program of China(2006AA10A039)Special Funding Projects for Research in Agricultural Public Service Sectors (200803037)Technology Development Program of Jilin Province (2006BAD02A10-6-6)~~
文摘Dynamic simulation system of maize growth is developed by the physiological and ecological model,morphological structure model,computer science and virtual reality technology,to improve the level of precise operation of maize production.The computer graphics algorithms,virtual reality technology,animation design and information integration technology are applied to maize production by this system.establishment of dynamic simulation system of maize growth is conducive to raise level of precise operation in maize production.The system also can assist the relevant production research and testing,to reduce cost and improve efficiency.
文摘A hidden line removal algorithm for bi parametric surfaces is presented and illustrated by some experimental results. The enclosure test is done using area coordinates. A technique of moving box of encirclement is presented. It is found that the algorithm is of general purpose, requires minimal computer storage, has high accuracy and simplicity, and is very easy to be implemented on a computer.
基金Supported by the National Natural Science Foundation of China (Grant Nos.60633030 and 90604008)National Basic Rearch Program of China (Grant No.2006CB303104)
文摘Rendering technology in computer graphics (CG) is now capable of producing highly photorealistic images, giving rise to the problem of how to identify CG images from natural images. Some methods were proposed to solve this problem. In this paper, we give a novel method from a new point of view of image perception. Although the photorealistic CG images are very similar to natural images, they are surrealistic and smoother than natural images, thus leading to the difference in perception. A pert of features are derived from fractal dimension to capture the difference in color perception between CG images and natural images, and several generalized dimensions are used as the rest features to capture difference in coarseness. The effect of these features is verified by experiments. The average accuracy is over 91.2%.
基金Supported by the National Natural Science Foundation of China(10377007)~~
文摘The skewed symmetry detection plays an improtant role in three-dimensional(3-D) reconstruction. The skewed symmetry depicts a real symmetry viewed from some unknown viewing directions. And the skewed symmetry detection can decrease the geometric constrains and the complexity of 3-D reconstruction. The detection technique for the quadric curve ellipse proposed by Sugimoto is improved to further cover quadric curves including hyperbola and parabola. With the parametric detection, the 3-D quadric curve projection matching is automatical- ly accomplished. Finally, the skewed symmetry surface of the quadric surface solid is obtained. Several examples are used to verify the feasibility of the algorithm and satisfying results can be obtained.
基金supported in part by the Science and Technology Innovation 2030-Key Project of“New Generation Artificial Intelligence”(2018AAA0102303)the Young Elite Scientists Sponsorship Program of China Association of Science and Technology(YESS20210289)+1 种基金the China Postdoctoral Science Foundation(2020TQ1057,2020M682823)the National Natural Science Foundation of China(U20B2071,U1913602,91948204)。
文摘Change detection(CD)is becoming indispensable for unmanned aerial vehicles(UAVs),especially in the domain of water landing,rescue and search.However,even the most advanced models require large amounts of data for model training and testing.Therefore,sufficient labeled images with different imaging conditions are needed.Inspired by computer graphics,we present a cloning method to simulate inland-water scene and collect an auto-labeled simulated dataset.The simulated dataset consists of six challenges to test the effects of dynamic background,weather,and noise on change detection models.Then,we propose an image translation framework that translates simulated images to synthetic images.This framework uses shared parameters(encoder and generator)and 22×22 receptive fields(discriminator)to generate realistic synthetic images as model training sets.The experimental results indicate that:1)different imaging challenges affect the performance of change detection models;2)compared with simulated images,synthetic images can effectively improve the accuracy of supervised models.
基金This work is supported by the National Key Research and Development Program of China under Grant No. 2017YFB1002701, the National Natural Science Foundation of China under Grant No. 61602265. The authors would also like to thank the support from the Engineering Research Network Wales and the Royal Academy of Engineering, UK.
文摘Realistic animation of various interactions between multiple fluids, possibly undergoing phase change, is a challenging task in computer graphics. The visual scope of multi-phase multi-fluid phenomena covers complex tangled surface structures and rich color variations, which can greatly enhance visual effect in graphics applications. Describing such phenomena requires more complex models to handle challenges involving the calculation of interactions, dynamics and spatial distribution of multiple phases, which are often involved and hard to obtain real-time performance. Recently, a diverse set of algorithms have been introduced to implement the complex multi-fluid phenomena based on the governing physical laws and novel discretization methods to accelerate the overall computation while ensuring numerical stability. By sorting through the target phenomena of recent research in the broad subject of multiple fluids, this state-of-the-art report summarizes recent advances on multi-fluid simulation in computer graphics.