To estimate the parameters of the mixed additive and multiplicative(MAM)random error model using the weighted least squares iterative algorithm that requires derivation of the complex weight array,we introduce a deriv...To estimate the parameters of the mixed additive and multiplicative(MAM)random error model using the weighted least squares iterative algorithm that requires derivation of the complex weight array,we introduce a derivative-free cat swarm optimization for parameter estimation.We embed the Powell method,which uses conjugate direction acceleration and does not need to derive the objective function,into the original cat swarm optimization to accelerate its convergence speed and search accuracy.We use the ordinary least squares,weighted least squares,original cat swarm optimization,particle swarm algorithm and improved cat swarm optimization to estimate the parameters of the straight-line fitting MAM model with lower nonlinearity and the DEM MAM model with higher nonlinearity,respectively.The experimental results show that the improved cat swarm optimization has faster convergence speed,higher search accuracy,and better stability than the original cat swarm optimization and the particle swarm algorithm.At the same time,the improved cat swarm optimization can obtain results consistent with the weighted least squares method based on the objective function only while avoiding multiple complex weight array derivations.The method in this paper provides a new idea for theoretical research on parameter estimation of MAM error models.展开更多
With the rapid evolution of Internet technology,fog computing has taken a major role in managing large amounts of data.The major concerns in this domain are security and privacy.Therefore,attaining a reliable level of...With the rapid evolution of Internet technology,fog computing has taken a major role in managing large amounts of data.The major concerns in this domain are security and privacy.Therefore,attaining a reliable level of confidentiality in the fog computing environment is a pivotal task.Among different types of data stored in the fog,the 3D point and mesh fog data are increasingly popular in recent days,due to the growth of 3D modelling and 3D printing technologies.Hence,in this research,we propose a novel scheme for preserving the privacy of 3D point and mesh fog data.Chaotic Cat mapbased data encryption is a recently trending research area due to its unique properties like pseudo-randomness,deterministic nature,sensitivity to initial conditions,ergodicity,etc.To boost encryption efficiency significantly,in this work,we propose a novel Chaotic Cat map.The sequence generated by this map is used to transform the coordinates of the fog data.The improved range of the proposed map is depicted using bifurcation analysis.The quality of the proposed Chaotic Cat map is also analyzed using metrics like Lyapunov exponent and approximate entropy.We also demonstrate the performance of the proposed encryption framework using attacks like brute-force attack and statistical attack.The experimental results clearly depict that the proposed framework produces the best results compared to the previous works in the literature.展开更多
About 170 nations have been affected by the COvid VIrus Disease-19(COVID-19)epidemic.On governing bodies across the globe,a lot of stress is created by COVID-19 as there is a continuous rise in patient count testing p...About 170 nations have been affected by the COvid VIrus Disease-19(COVID-19)epidemic.On governing bodies across the globe,a lot of stress is created by COVID-19 as there is a continuous rise in patient count testing positive,and they feel challenging to tackle this situation.Most researchers concentrate on COVID-19 data analysis using the machine learning paradigm in these situations.In the previous works,Long Short-Term Memory(LSTM)was used to predict future COVID-19 cases.According to LSTM network data,the outbreak is expected tofinish by June 2020.However,there is a chance of an over-fitting problem in LSTM and true positive;it may not produce the required results.The COVID-19 dataset has lower accuracy and a higher error rate in the existing system.The proposed method has been introduced to overcome the above-mentioned issues.For COVID-19 prediction,a Linear Decreasing Inertia Weight-based Cat Swarm Optimization with Half Binomial Distribution based Convolutional Neural Network(LDIWCSO-HBDCNN)approach is presented.In this suggested research study,the COVID-19 predicting dataset is employed as an input,and the min-max normalization approach is employed to normalize it.Optimum features are selected using Linear Decreasing Inertia Weight-based Cat Swarm Optimization(LDIWCSO)algorithm,enhancing the accuracy of classification.The Cat Swarm Optimization(CSO)algorithm’s convergence is enhanced using inertia weight in the LDIWCSO algorithm.It is used to select the essential features using the bestfitness function values.For a specified time across India,death and confirmed cases are predicted using the Half Binomial Distribution based Convolutional Neural Network(HBDCNN)technique based on selected features.As demonstrated by empirical observations,the proposed system produces significant performance in terms of f-measure,recall,precision,and accuracy.展开更多
基金supported by the National Natural Science Foundation of China(No.42174011 and No.41874001).
文摘To estimate the parameters of the mixed additive and multiplicative(MAM)random error model using the weighted least squares iterative algorithm that requires derivation of the complex weight array,we introduce a derivative-free cat swarm optimization for parameter estimation.We embed the Powell method,which uses conjugate direction acceleration and does not need to derive the objective function,into the original cat swarm optimization to accelerate its convergence speed and search accuracy.We use the ordinary least squares,weighted least squares,original cat swarm optimization,particle swarm algorithm and improved cat swarm optimization to estimate the parameters of the straight-line fitting MAM model with lower nonlinearity and the DEM MAM model with higher nonlinearity,respectively.The experimental results show that the improved cat swarm optimization has faster convergence speed,higher search accuracy,and better stability than the original cat swarm optimization and the particle swarm algorithm.At the same time,the improved cat swarm optimization can obtain results consistent with the weighted least squares method based on the objective function only while avoiding multiple complex weight array derivations.The method in this paper provides a new idea for theoretical research on parameter estimation of MAM error models.
基金This work was supprted by Princess Nourah bint Abdulrahman University Researchers Supporting Project number(PNURSP2022R151),Princess Nourah bint Abdulrahman University,Riyadh,Saudi Arabia.
文摘With the rapid evolution of Internet technology,fog computing has taken a major role in managing large amounts of data.The major concerns in this domain are security and privacy.Therefore,attaining a reliable level of confidentiality in the fog computing environment is a pivotal task.Among different types of data stored in the fog,the 3D point and mesh fog data are increasingly popular in recent days,due to the growth of 3D modelling and 3D printing technologies.Hence,in this research,we propose a novel scheme for preserving the privacy of 3D point and mesh fog data.Chaotic Cat mapbased data encryption is a recently trending research area due to its unique properties like pseudo-randomness,deterministic nature,sensitivity to initial conditions,ergodicity,etc.To boost encryption efficiency significantly,in this work,we propose a novel Chaotic Cat map.The sequence generated by this map is used to transform the coordinates of the fog data.The improved range of the proposed map is depicted using bifurcation analysis.The quality of the proposed Chaotic Cat map is also analyzed using metrics like Lyapunov exponent and approximate entropy.We also demonstrate the performance of the proposed encryption framework using attacks like brute-force attack and statistical attack.The experimental results clearly depict that the proposed framework produces the best results compared to the previous works in the literature.
文摘About 170 nations have been affected by the COvid VIrus Disease-19(COVID-19)epidemic.On governing bodies across the globe,a lot of stress is created by COVID-19 as there is a continuous rise in patient count testing positive,and they feel challenging to tackle this situation.Most researchers concentrate on COVID-19 data analysis using the machine learning paradigm in these situations.In the previous works,Long Short-Term Memory(LSTM)was used to predict future COVID-19 cases.According to LSTM network data,the outbreak is expected tofinish by June 2020.However,there is a chance of an over-fitting problem in LSTM and true positive;it may not produce the required results.The COVID-19 dataset has lower accuracy and a higher error rate in the existing system.The proposed method has been introduced to overcome the above-mentioned issues.For COVID-19 prediction,a Linear Decreasing Inertia Weight-based Cat Swarm Optimization with Half Binomial Distribution based Convolutional Neural Network(LDIWCSO-HBDCNN)approach is presented.In this suggested research study,the COVID-19 predicting dataset is employed as an input,and the min-max normalization approach is employed to normalize it.Optimum features are selected using Linear Decreasing Inertia Weight-based Cat Swarm Optimization(LDIWCSO)algorithm,enhancing the accuracy of classification.The Cat Swarm Optimization(CSO)algorithm’s convergence is enhanced using inertia weight in the LDIWCSO algorithm.It is used to select the essential features using the bestfitness function values.For a specified time across India,death and confirmed cases are predicted using the Half Binomial Distribution based Convolutional Neural Network(HBDCNN)technique based on selected features.As demonstrated by empirical observations,the proposed system produces significant performance in terms of f-measure,recall,precision,and accuracy.